Math, asked by ramapatel489, 3 months ago

A rectangle is 15 meters long and its perimeter is the same as that of square whose side is

14 meters. find the breath of rectangle.​

Answers

Answered by Anonymous
45

Given:

  • A rectangle is 15 meters long and its perimeter is the same as that of square whose side is 14 meters

To Find:

  • The breadth of the rectangle

Solution:

➤ Here we're given with the side of the square and the length of the rectangle. It is said that the perimeter of the square is equal to the perimeter of the rectangle and we've asked to find the breadth of the rectangle.

Now,

  • Let's firstly find the perimeter of the square

As we know that,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \dag \bigg( \bf \: perimeter _{(square)} = 4  \times side \bigg)

Where,

  • Side of the square is 14m

{ \underline{ \bf{ \bigstar \: Substituting \: the \: values : }}}

{ : \implies} \sf \: Perimeter _{(square)} = 4 \times side \: \:   \\  \\  \\ { : \implies} \sf \: Perimeter _{(square)} = 4 \times 14cm \\  \\  \\ { : \implies} \sf \: Perimeter _{(square)} = { \blue{ \boxed{ \frak{56cm}} \star}} \:  \:  \:

  • Henceforth the perimeter of the square is 56cm

We know that,

  • Perimeter of the square is equal to the perimeter of the rectangle

So,

  • Perimeter of the rectangle is 56cm

Now,

  • Let's find the breadth of the rectangle

As we know that,

 \:  \:  \:  \:  \:  \:   \:  \:  \:  \: \dag \bigg( \bf \: perimeter _{(rectangle)}  = 2(lenght + breadth) \bigg)

Where,

  • Perimeter = 56m
  • Length = 15cm

{ \underline{ \bf{ \bigstar \: Substituting \: the \: values : }}}

{ : \implies} \sf \: Perimeter _{(rectangle)} = 2(lenght + breadth) \\  \\  \\ { : \implies} \sf 56cm = 2(15 + b) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \sf 56cm = 30 + 2b  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \sf 2b = 26cm  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \sf b =  \frac{26}{2} cm  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \sf { \purple{\underline{ \boxed{\frak{b = 13cm}}}\star}}\:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • Henceforth the breadth of the rectangle is 13cm
Answered by thebrainlykapil
54

Given :

  • Length of the Rectangle = 15m
  • Perimeter of Rectangle is same as Perimeter of Square.
  • Side of Square = 14m

To Find :

  • Breadth of the Rectangle

Solution :

It is given that :

⟶⠀Square's peri. = Rectangle's peri.

⟶⠀4 × side = 2(Length + Breadth)

⟶⠀4 × 14 = 2(15 + Breadth)

⟶⠀56 = 2(15 + Breadth)

⟶⠀56/2 = 15 + Breadth

⟶⠀28 = 15 + Breadth

⟶⠀28 - 15 = Breadth

⟶⠀13m = Breadth

So, Breadth of the Rectangle is 13m

___________________

Additional Info :

Formulas Related to Rectangle:

  • Perimeter of Rectangle = 2( l + b)
  • Area = Length × Breadth
  • Length = Area / Breadth
  • Breadth = Area / Length
  • Diagonal = √(l)² + (b)²

Formulas Related to Square :

  • Perimeter = 4 × Side
  • Area = Side × Side
  • Side of Square = √Area
  • Diagonal = √2 × Side
  • Area = ½ × (Diagonal)²
  • Area = (Perimeter ÷ 4)²

___________________

Similar questions