English, asked by SugaryHeart, 14 days ago

A rectangle is 16 m by 9 m. Find a side of the square whose area equals the area of the rectangle. By how much does the perimeter of the rectangle exceed the perimeter of the square?

don't spam..​

Answers

Answered by ZeroVoltage
6

Answer:

✦ Side of Square = 12 m

2 m

Step by Step Explanation:

Given :

  • Length of Rectangle : 16 m
  • Breadth of Rectangle : 9 m

[/tex]</p><p><strong><u>T</u></strong><strong><u>o</u></strong><strong><u> </u></strong><strong><u>F</u></strong><strong><u>i</u></strong><strong><u>n</u></strong><strong><u>d</u></strong><strong><u> </u></strong><strong><u>:</u></strong></p><ul><li>side of the square whose area equals the area of the rectangle. </li></ul><p>[tex]

Solution :

First we will find the Area of the Rectangle :

Area of Rectangle = l x b

✦ 16 x 9 = 144

Area of the rectangle is 144 m².

We know that area of a square =

side²

let the side be x.

✦ x² = 144

✦ x = √144

✦ x = 12

[/tex] </p><p>Now we will find perimeter of Square and Rectangle :</p><p>Perimeter of Square = <strong> </strong><strong>s</strong><strong>i</strong><strong>d</strong><strong>e</strong><strong> </strong><strong>x</strong><strong> </strong><strong>4</strong></p><p>Perimeter of Rectangle = <strong> </strong><strong>2</strong><strong>(</strong><strong>l</strong><strong> </strong><strong>+</strong><strong> </strong><strong>b</strong><strong>)</strong></p><p>[tex]

Pm of Square = 12 x 4 = 48

Pm of Rectangle = 2(16 + 9) = 50

Now we know the Perimeter of Square and rectangle.. Then,

50 m - 48 m = 2 m

\rightarrowtail Hence if we exceed Perimeter of Square and rectangle we get 2 m.

Answered by KnightLyfe
42

As per the provided information in the given question, we have:

  • Edges of rectangle are 16 m and 9 m.

We've been asked to find a side of the square whose area equals the area of the rectangle also we have to calculate difference in their perimeters.

Area of rectangle is length times the breadth. So, calculating the area of rectangle.

\longrightarrow\quad\sf{{Area}_{(Rectangle)}=length\times breadth}

Substituting values.

\longrightarrow\quad\sf{{Area}_{(Rectangle)}=16\times 9}

Performing multiplication.

\longrightarrow\quad\bold{{Area}_{(Rectangle)}=144\: {cm}^{2}}

According to the given condition.

\longrightarrow\quad\sf{{Area}_{(Square)}={Area}_{(Rectangle)}}

"Area of square is square of its side."

\longrightarrow\quad\sf{{(Side)}^{2}={Area}_{(Rectangle)}}

As, we have calculated the area of rectangle. So,

\longrightarrow\quad\sf{{(Side)}^{2}=144}

Transposing root from LHS to RHS.

\longrightarrow\quad\sf{Side=\sqrt{144}}

\longrightarrow\quad\bold{Side=12\: m}

Now, we have to calculate the difference between the perimeter of Rectangle and that of square. Fo finding so, firstly we need to calculate the perimeter of square and perimeter of rectangle.

\longrightarrow\quad\sf{{Perimeter}_{(Square)}=4\times Side}

Here, the side of the square is 12 m. So,

\longrightarrow\quad\sf{{Perimeter}_{(Square)}=4\times 12}

Performing multiplication.

\longrightarrow\quad\bold{{Perimeter}_{(Square)}=48\: m}

Now,

\longrightarrow\quad\sf{{Perimeter}_{(Rectangle)}=2(l+b)}

Substituting values.

\longrightarrow\quad\sf{{Perimeter}_{(Rectangle)}=2(16+9)}

Performing addition.

\longrightarrow\quad\sf{{Perimeter}_{(Rectangle)}=2(25)}

Performing multiplication.

\longrightarrow\quad\bold{{Perimeter}_{(Rectangle)}=50\: m}

Now, finding their difference. \\\longrightarrow\quad\sf{{Perimeter}_{(Rectangle)}-{Perimeter}_{(Square)}=50-48}

Performing subtraction. \\\longrightarrow\quad\bold{{Perimeter}_{(Rectangle)}-{Perimeter}_{(Square)}=2\: m}

❝ By 2 meters the perimeter of the rectangle exceed the perimeter of the square. ❞

Similar questions