Math, asked by avtarsinghg824, 1 year ago

A rectangle is 16m by 9m. find a side of the square whose area equal the area of the rectangle. By how much does the perimeter of the rectangle exceed the perimeter of the square


Answers

Answered by Brâiñlynêha
17

\huge\mathbb{SOLUTION:-}

Area of rectangle=Area of square

  • Dimensions of rectangle
  • = >16 m and 9m

Now the area if rectangle

\boxed{\sf{Area\:of\: rectangle=l\times b}}

\sf\implies Area\:of\: rectangle=16\times 9\\ \\ \sf\implies Area=144m{}^{2}

  • Area of rectangle is 144 square metre .

  • So the Area of square is also 144 square metre

  • Now the side of square

\boxed{\sf{Area\:of\: square= side{}^{2}}}

\sf\implies Area=side{}^{2}\\ \\ \sf\implies 144=side{}^{2}\\ \\ \sf\implies \sqrt{144}=side\\ \\ \sf\implies side=12m

  • Side of square is 12m

  • Now the perimeter of square

\boxed{\sf{Perimeter\:of\:square=4\times side}}

\sf Perimeter\:of\:square=4\times 12\\ \\ \sf\implies perimeter=48m

  • Now the perimeter of rectangle

\boxed{\sf{Perimeter\:of\: rectangle=2(l+b)}}

\sf\implies Perimeter\:of\: rectangle=2(16+9)\\ \\ \sf\implies Perimeter=2\times 25\\ \\ \sf\implies Perimeter=50m

  • Perimeter of rectangle is 50m.

  • which is greater than perimeter of square by 2 m

\boxed{\sf{\purple{Perimeter\:of\:square\:exceed\:by\:2m}}}

Answered by EliteSoul
20

Answer:

\bf\green{Side\:of\:square=12\:m}

\bf\purple{Perimeter\:exceeds\:by\:2\:m}

________________________

Given that,

  • Dimensions of rectangle=16 m× 9m
  • Area of rectangle=Area of square

Now,

{\boxed{\bold{Area\:of\:rectangle=Length\times Breadth}}}

\rightarrow\tt Area = (16 \times 9)\:{m}^{2} \\ \rightarrow\tt Area = 144 \:{m}^{2}

{\boxed{\bold{Area\:of\:square={(Side)}^{2}}}}

As per the question now,

\rightarrow\tt {(Side)}^{2} = 144 \\ \rightarrow\tt Side =\sqrt{144}\:m \\ \rightarrow\tt Side = 12\:m

\therefore\bold{\underline{Side\:of\:square=12\:m}}

________________________

{\boxed{\bold{Perimeter\:of\:rectangle=2(Length+Breadth)}}}

\tt Perimeter = 2(16+9)\:m \\ \rightarrow\tt Perimeter = (2 \times 25)\:m \\ \rightarrow\tt Perimeter = 50 \:m

{\boxed{\bold{Perimeter\:of\:square=4\times side}}}

\rightarrow\tt Perimeter\:of\:square=(4 \times 12)\:m \\ \rightarrow\tt Perimeter = 48 \:m

\rightarrow\tt Perimeter\:exceeds\:by=(50-48)\:m \\ \rightarrow\tt Perimeter\:exceeds\:by=2\:m

\therefore\bold{\underline{Perimeter\:exceeds\:by=2\:m}}

Similar questions