Math, asked by shyampradeep05, 4 months ago

* A rectangle is 81 m long and 36 m broad. Find the side of a square whose area is
equal to the area of this rectangle.​

Answers

Answered by Brâiñlynêha
95

Given

Sides of rectangle

length= 81m

Breadth= 36m

Area of rectangle= Area of square

To Find

We have to find out the side of square

Solution

first find the area of square

\bullet\sf\ Area\ of\ square= (side)^2\\ \\ \bullet\sf\ Area\ of\ rectangle= length\times breadth\\ \\ \\ :\implies\sf\ (side)^2= \ell\times b\\ \\ \\ :\implies\sf\ \ (Side)^2= 81\times 36\\ \\ \\ :\implies\sf\ Side= \sqrt{81\times 36}\\ \\ \\ :\implies\sf\ Side= \sqrt{9\times 9\times 6\times 6}\\ \\ \\ :\implies\sf\ Side= 9\times 6\\ \\ \\ :\implies\sf\ Side= 54m\\ \\ \\ :\implies\underline{\boxed{\sf\ Side\ of\ square= 54m}}

Verification:-

Area of square = Area of rectangle

→ 54×54= 81×36

→ 2916sq.m = 2916sq.m

LHS = RHS

Hence our answer is correct !

Answered by Anonymous
198

AnswEr-:

  • \underline {\dag{\mathrm {The \:Side\:of\:Square \:is\:\bf{54\:m}}}}\\

Explanation-:

\mathrm {\bf{ Given-:}}\\

  • The length of a rectangle is 81 m

  • The Breadth of Rectangle is 36 m.

  • Area of Rectangle is equal to Area of Square.

\mathrm {\bf{ To\:Find -:}}\\

  • The Side of Square.

\sf{\bf{\dag{ Solution \:of\:Question -:}}}\\

\underbrace {\mathrm { \bf{ Understanding \:of\:Concept \:-:}}}\\

  • We have to find the Length of Side of a square when the Area of Rectangle is equal to the Area of Square and the Length and Breadth of Rectangle is given .

  • Firstly we have to find the area of Rectangle by Putting known Values [ Length and Breadth] in Formula for Area of Rectangle and it is give that Area of Rectangle is equal to the Area of Square.

  • By Putting The area of Square in the Formula for Area of Square then ,

  • We can get the side of Square.

_______________________________________________

\sf{\bf{\dag{Finding \:Area \:of\:Rectangle -:}}}\\

As , We know that -:

  • \underline{\boxed{\mathrm{\pink {Area\:of\:Rectangle \:-: Length \: \times Breadth \:sq.units}}}}\\

\mathrm {\bf{ Here-:}}\\

  • The length of a rectangle is 81 m
  • The Breadth of Rectangle is 36 m.

Now , By Putting known Values in Formula for Area of Rectangle-:

  • \longmapsto {\mathrm { Area\:-:81 \times 36  }}\\

  • \longmapsto {\mathrm { Area\:-:2916 \:m^{2}  }}\\

Therefore,

  • \longmapsto {\mathrm { Area_{(Rectangle)}\:-:2916 \:m^{2}  }}\\

____________________________________________________

As , We have given that ,

  • Area of Rectangle is equal to Area of Square.

Then ,

  • \longmapsto {\mathrm { Area_{(Square)}\:-:2916 \:m^{2}  }}\\

______________________________________________________

\sf{\bf{\dag{Finding \:Side \:of\:Rectangle -:}}}\\

As , We know that ,

  • \underline{\boxed{\mathrm{\pink {Area\:of\:Square \:-: Side \: \times Side \:or\:Side^{2}\:sq.units}}}}\\

\mathrm {\bf{ Here-:}}\\

  • Area of Square is 2916 m²

Now , By Putting known Values in Formula for Area of Square-:

  • \longmapsto {\mathrm { Side^{2}\:=2916 m^{2}  }}\\

  • \longmapsto {\mathrm { Side\:=\sqrt {2,916}  }}\\

As, We know that ,

  • [ 54² = 2916 ]

  • \longmapsto {\mathrm { Side\:=54m  }}\\

Hence ,

  • \underline {\dag{\mathrm {The \:Side\:of\:Square \:is\:\bf{54\:m}}}}\\

______________________________________________________

Similar questions