Math, asked by nived28bkvpgm, 4 months ago

A rectangle is having length (x+4)cm and breadth (x+6)cm.

Find its (i) Perimeter (ii) Area
12

Answers

Answered by Sasmit257
2

Given:-

Length:(x+4)

Breadth:(x+6)

Formula:-

Area of rectangle: l×b

Perimeter of rectangle: 2(l+b)

\huge\fbox\pink{Answer}

i) Perimeter of rectangle:-

2(l + b)

2(x + 4 + x + 6)

2(2x + 10)

4x + 20

ii) Area of rectangle:-

l \times b

(x + 4)(x + 6)

x ^{2}  + 6x + 4x + 24

x^{2}  + 10x + 24

So, Perimeter is 4x+20

And Area is x^2+10x+24

Answered by Rubellite
5

\Large{\underbrace{\sf{\green{Required\:Solution:}}}}

Given thαt,

  • A rectαngle is hαving length (x+4)cm αnd breαdth (x+6)cm.

◾️We hαve to find the perimeter αnd the αreα of the rectαngle.

_____________

\large\star{\boxed{\sf{\green{ Perimeter_{(rectangle)} = 2(length+breadth)}}}}

  • Substitute the vαlues αnd simplify.

\longrightarrow{\sf{ 2 \big[(x+4)+(x+6)\big]}}

\longrightarrow{\sf{ 2(x+x + 4+6)}}

\longrightarrow{\sf {2(2x+10)}}

\longrightarrow{\sf{ 2\times 2x + 2\times 10}}

\large\implies{\boxed{\sf{\green{ 4x+20}}}}

Therefore, the perimeter of the rectαngle is 4x+20.

Now,

\large\star{\boxed{\sf{\green{ Area_{(rectangle)} = length\times breadth}}}}

  • Substitute the vαlues αnd simplify.

\longrightarrow{\sf{ (x+4)(x+6)}}

  • Identity used : (x+α)(x+b) = x² + (α+b)x + αb.

\longrightarrow{\sf{ x^{2} + (4+6)x + (4\times 6)}}

\large\implies{\boxed{\sf{\green{x^{2} + 10x + 24}}}}

Hence, the αreα of the rectαngle is x²+10x+24.

And we αre done! :D

__________________________


IdyllicAurora: Awesome :D
Rubellite: Thanks anshu :)
Sasmit257: Arohi jii superb
Sasmit257: can u pls tell me the latest codes?
Sasmit257: pl
Sasmit257: pls*
Similar questions