Math, asked by nishamalik9485993616, 10 months ago

A rectangle sheet of paper is 12 1/2 cm long and 10 2/3 cm wide . Find its perimetre ?​

Answers

Answered by mastermimd2
0

Step-by-step explanation:

Given ;-

⇒ Length of the rectangle sheet = 12   1 / 2  cm

⇒Breadth of the rectangle sheet = 10    2 / 3 cm

To find :-

⇒Perimeter = ?

Sol ;- 

⇒ Perimeter of rectangle  =         2   (  l  +  b  )

                                         ⇒   {  2  ( 25 / 2  + 32  /3  }

                                         ⇒  {   2  ( 75 / 6  +  64  /  6  } 

                                         

                                         ⇒ 2 × 139 /  6  

 

                           

                                         ⇒   139   /  3  = 3 1/46  cm

Therefore the answer is ;- 3   1 /46  cm

Answered by Anonymous
5

\huge\mathfrak\blue{Answer:}

Given:

  • We have been given a rectangle
  • \\Dimensions are \sf{12 \: \dfrac{1}{2}} and \sf{10 \: \dfrac{2}{3}} which are given in cm

To Find:

  • We have to find the perimeter of Given rectangle

Solution:

We have been given that in a rectangle

\boxed{\sf{Length = 12 \: \dfrac{1}{2}= \dfrac{25}{2} cm}}

\boxed{\sf{Breadth = 10 \dfrac{2}{3}= \dfrac{32}{3} cm}}

_______________________________

\underline{\large\mathfrak\orange{Finding \; the \: Perimeter:}}

\implies \boxed{\sf{\pink{Perimeter = 2 \: ( Length + Breadth ) }}}

\implies \sf{Perimeter = 2 \: \left (  \dfrac{25}{2} + \dfrac{32}{3} \right ) } \\ \\

Taking LCM inside Braket

 \\ \implies \sf{2 \: \left  ( \dfrac{25 \times 3 + 32 \times 2 }{6} \right ) }

\implies \sf{ 2 \: \left  ( \dfrac{75 + 64}{6} \right ) }

\implies \sf{2 \times \dfrac{139}{6} }

\implies \sf{\cancel{2} \times \dfrac{139}{\cancel{6}} }

\implies \sf{\dfrac{139}{2} }

\implies \sf{69.5 cm }

Hence perimeter is 69.5 cm

________________________________

\huge\underline{\sf{\red{A}\orange{n}\green{s}\pink{w}\blue{e}\purple{r}}}

\large\boxed{\mathfrak\purple{Perimeter \: of \: Rectangle = 69.5 \: cm }}

________________________________

Similar questions