Math, asked by Graisonsajiy7335, 9 months ago

A rectangle whose area is 96cm^2 is such that its length is 4metres longer than its width find. [a] it dimensions [b] its perimeter

Answers

Answered by Vamprixussa
23

Given

Area of the rectangle = 96 cm²

Length is 4 m longer than its width.

Let the width be x.

∴ Length = 4+x

=> (4+x)(x)=96\\=> x^{2} +4x-96=0\\=>x^{2} +12x-8x-96=0\\=>x(x+12)-8(x+12)=0\\=> (x-8)(x+12)=0

Now,

x+12=0\\=> x = -12

-ve value is not taken into account

∴ x = 8

=> Length = 4 + 8 = 12 m

    Breadth = 8 m

Perimeter

2(length+breadth)\\=2(12+8)\\=2(20)\\

= 40 m

                                                         

Answered by Anonymous
19

\Large{\underline{\underline{\bf{Solution :}}}}

We know the formula to find the area of rectangle

\Large{\implies{\boxed{\boxed{\sf{Area = Length \times Breadth}}}}}

Where,

  • Breadth = a
  • Length = 4a

__________________[Put Values]

\sf{→x(x + 4) = 96} \\ \\ \sf{→x^2 +  4x = 96} \\ \\ \sf{x^2 + 4x - 96}

\sf{Factorise \: the \: Quadratic \: equation}

\begin{array}{crclc}&&-96x^2&&\\&&\swarrow\searrow&&\\&-8t&&12t&\end{array}\quad\boxed{\begin{minipage}{6cm}\item\bigstar \quad \; \, $x^2+4x-96=0$ \\\begin{itemize} \item $x^2\times(-96)\;\,=-96x^2$\item $-96x^2\qquad\;\, = 8x\times12x$\item $-8x+(12x)\, =4x$\end{itemize}\end{minipage}}

\begin{aligned}\implies \sf{x^2+12x-8x-96}&=0\\\implies \sf{x(x+12)-8(x+12)}&=0\\\implies \mathsf{(x+12)(x-8)}&=0\\\implies \sf{x-8}&=0\\\implies \sf{t}&=8\end{aligned}

\sf\textsf{While equating the term (x + 12) to 0, }\\\sf\textsf{a negative value is obtained.}

Length = x + 4 = 12 cm

Breadth = 8 cm

\rule{150}{2}

\Large{\star{\boxed{\sf{Perimeter = 2(L + B)}}}}

\sf{→Perimeter = 2(12 + 8)} \\ \\ \sf{→Perimeter = 2(20)} \\ \\ \sf{→Perimeter = 40 \: cm}

Similar questions