Math, asked by sanskrutikottawar, 3 months ago

A rectangle with diagonals of length 20cm has sides in the ratio 2 : 1 . find the area of the rectangle.

Answers

Answered by kavyashree9asgips
2

A rectangle with diagonals of length 20cm has sides in the ratio 2 : 1 . find the area of the rectangle.

hope it helps

Attachments:
Answered by OyeeKanak
33

ㅤㅤㅤㅤㅤㅤㅤ

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \huge{ \sf{ \underline{ \underline \green{Question:- }}}}

A rectangle with diagonals of length 20cm has sides in the ratio 2 : 1 . find the area of the rectangle.

Given:-

  • Diagonals of length 20 cm.
  • Ratio of sides are 2:1

To find:-

  • Area of rectangle

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \huge \sf{ \underline{ \underline{ \pink{Solution:- }}}}

  • Let the length =2x
  • and the breadth = 1x

  \:  \:  \:  \:  \: \huge{ \boxed{ \underline{ \mathfrak{ \red{By  \: pythagoras \:  theorem:-}}}}}

  \:  \:  \:  \:  \:  \: \large \:  : ⇰20² = (2x)² + (1x)²    

 \:  \:  \:  \:  \red{ : ⇒400 = 4x² + 1x²}

  \:  \:  \:  \:  \:  \:  \pink{: ⇒ 400 = 5x²}

 \:  \:  \:  \:  \:  \:  \:   \blue{\large \: : ⇒ x² =  \frac{400}{5}}

 \:  \:  \:  \:  \:  \:  \red{ :⇒ x² = 80}

  \:  \:  \:  \:  \:  \:   \:  \:  \: \orange{ :⇒ x =√80}

  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf  \green{\: x =  \sqrt{ x = 2×2×2×2×5}}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:⇒  \large \: { \color{gold}{x = 4 \sqrt{5} }}

  \:  \:  \:  \: \mathfrak{ \boxed{ \green{ \sf \: ∴length =2x = 2×4 \sqrt{5}  = 8 \sqrt{5} }}}

  breadth = 1x= 4  \sqrt{5}

⇒Area of a rectangle = l×b

 \red{= 8 \sqrt{5}  × 4 \sqrt{5} }      

  \red{=32 ×5}

 \green{ = 160}

Learn more:-

  • Area of rectangle = length ×breadth
  • Area of square =side ×side
  • Area of triangle =½×b×h
  • Area of circle =πr²
Similar questions