Math, asked by ganeshganni8928, 9 months ago

A Rectangular Field has area 45m and perimeter 28m.Its dimensions are

Answers

Answered by MrChauhan96
5

\bf\purple{\underline{\boxed{Question}}}

\:

\small\text{Rectangular Field has area 45m and}\\{\small\text{ perimeter 28m . Its dimensions are}}

\:

\bf\purple{\underline{\boxed{Solution}}}

\:

\small\text{As we know , The perimeter of}\\{\small\text{ a rectangle is 2(L+B)}}

\:

\small\text{perimeter of a rectangle is = 28 }

\:

\small\text{Acc. to Question}

\:

\small\text{2(L+B) = 28 }

\:

\small\tt{L+B\:=\:{\cancel\frac{28}{2}}}

\:

\small\tt{L+B\:=\:14}

\:

\small\tt{L\:=\:14\:-\:B\:\:\:\:......(1)}

\:

\small\text{As we know , The area of}

\small\tt{ a \:rectangle\: is\: (L\times B)}

\:

\small\text{perimeter of a rectangle is = 45 }

\:

\small\text{Acc. to Question}

\:

\small\tt{L\times B\: =\: 45 }

\:

\small\text{Substituting value of L }

\:

\small\tt{(14-B)\times B \:=\: 45 }

\:

\small\tt{14B-B^{2}\:=\: 45 }

\:

\small\tt{14B-B^{2}\:-45\:=\: 0 }

\:

\small\text{Taking (-) common }

\:

\small\tt{B^{2}\:-14B\:+\:45\:=\: 0 }

\:

\small\tt{B^{2}\:-\:14B\:+\:45}

\:

\small\tt{Let's\: factorise\: this\: equation}

\:

\small\tt{We\:will\:get,}

\:

\small\tt{B^{2}-9B\:-\:5B\:+\:45}

\:

\small\tt{B(B-9)-5(B-9)}

\:

\small\tt{(B-5)\:(B-9)=0}

\:

\small\tt{Therefore,}

\:

\small\tt\red{B={5}\:\:,\:B\:=\:{9}}

\:

\small\tt\red{Hence\:,\:Length\:of\: the\: rectangle\:is\:=\:9}

\:

\small\tt\red{And\:,\:Breadth\:of\: the\: rectangle\:is\:=\:5}

\:

\bf\purple{\underline{\boxed{Thanks}}}

Similar questions