Math, asked by Mahlove10, 3 months ago

A rectangular garden has an area of 360 square feet. the length of the garden is 9 feet longer than the width. find the dimensions of the garden in feet.​

Answers

Answered by MiraculousBabe
46

Answer:

\huge\underline{\frak{  \:  \:  \:  \:  \:  \: Solution : \:  \:  \:  \:  \:  \: }} \\  \\

\frak {\pink{Let}}\begin{cases} \sf{\red{Breadth \:  be  \: x}}\\ \sf{\orange{The \:  Length = x + 9}}\end{cases} \\

\bigstar \: \underline{\textsf{According to the given Question :} }\\  \\

:\implies \sf Area = Length \times Breadth \\  \\  \\

:\implies \sf 360=(x + 9 ) x \\  \\  \\

:\implies \sf 360= {x}^{2} + 9x  \\  \\  \\

:\implies \sf  {x}^{2}   + 9x - 360 = 0\\  \\  \\

:\implies \sf  {x}^{2}   + 24x - 15x - 360 = 0\\  \\  \\

:\implies \sf  x(x + 24) - 15(x + 24) = 0\\  \\  \\

:\implies \sf (x + 24) \: (x - 15) = 0\\  \\  \\

:\implies \underline{ \boxed{ \sf  x =  - 24 \: or \: x = 15}}\\  \\  \\

\therefore\:\underline{\textsf{Ignoring the negative value, the Breadth of rectangular garden is \textbf{15 ft}}}. \\  \\  \\

_____________________...

\bigstar \: \underline{\textsf{Dimensions of rectangular garden :}} \\  \\

\bullet\:\:\textsf{The Breadth of rectangular garden = x = \textbf{15 ft.}} \\  \\

\bullet\:\:\textsf{The Length of rectangular garden = x + 9 = 15 + 9 = \textbf{24 ft.}} \\  \\

Answered by itztalentedprincess
29

Question:-

A \:  rectangular \:  garden \:  has  \: an \:  area \:  of  \: 360 \:  square \:  feet. \:  the \:  length  \: of  \: the  \: garden  \: is \:  9 \:  feet  \: longer \:  than \:  the \:  width. \:  find \:  the \:  dimensions \:  of \:  the  \: garden  \: in  \: feet.

\huge{\underline{\mathtt{\red{ƛ}\pink{N}\green{S}\blue{W}\purple{E}\orange{R}}}} \red♡

The area A = 360 square ft.

And the one condition “ 9 ft. longer than it is width.”

Find out, both the dimensions of the rectangular garden = ?

The value of the length L = W + 9

Area A = { Length × width }

360 = { (W + 9) × W }

W ^ 2 + 9W -360 = 0

Now it is a quadratic equations it has two roots.

W ^ 2 + (24–15)W -360=0

W ^ 2 + 24W -15W -360=0

W(W +24)-15(W+24)=0

(W+24)(W-15)=0

There are two value of we get,

(W +24)=0, W = -24 ( not valid value )

If W -15=0, W=15 ft. answer (dimension)

The value of length L = W + 9 = 15+9= 24 ft.

L= 24 ft. answer ( dimension)

______________________________________

Similar questions