Math, asked by siddharth283, 3 months ago

A rectangular loop of length 50 cm and width 38 cm is converted into a circular loop. find the radius of the circular loop​

Answers

Answered by Anonymous
34

Given:

  • Length ( Rectangle) = 50cm
  • Breadth (Rectangle) = 38 cm

 \\

To Find:

  • Radius of Circular Loop?

 \\

Formula Used:

 \\ \bigstar{\underline{\boxed{\tt\large\green{ Perimeter_{(Rectangle)} = 2(l + b)  }}}}  \\

Where

  • l = Length
  • b = Breadth

 \\

Solution:

After substituting values,

 \implies P = 2(l + b)

 \implies P = 2(50 + 38)

 \implies P = 2( 88 )

 \implies P = 2 × 88

 \implies P = 176 cm

Hence,

  • The Perimeter of the Rectangular loop is 176 cm.

________________________

 \\ \bigstar{\underline{\boxed{\tt\large{ \pink{ Perimeter \ Or \ Circumference_{(Circle)} } = 2πr }}}} \\

:: Rectangular loop is converted into Circular Loop so, Perimeter of Rectangle is Equal to that of Circular shape.

  • Perimeter of Rectangle = Perimeter of Circle
  • 176 cm = 176 cm

 \implies P = 2πr

 \implies 176 = 2 × 22/7 × r

 \implies 176 × 7/22 × 2 = r

 \implies 28 cm = r

Hence,

  • The Radius of the Circular Loop is 28cm.

 \\ \\

 \bigstar{\underline{\tt\pink{ Formula \ related \ to \ Topic :- }}} \\

 \\ \bullet \: \:  {\sf\red{ Perimeter_{(Rectangle)} = 2(l + b) }} \\ \\ \bullet \: \: {\sf\large\red{  Circumference_{(Circle)} = 2πr  }} \\ \\ \bullet \: \: {\sf\large\purple{ Area_{(Circle)} = πr^2  }} \\

Answered by MissOxford
10

Question :

A rectangular loop of length 50 cm and width 38 cm is converted into a circular loop. find the radius of the circular loop.

Answer :

\sf\red{Given:}

  • Length of the rectangular loop formed is 50 cm.

  • Breadth of the rectangular loop formed is 38 cm.

  • the loop is then converted to a circular loop .

\sf\red{To\:Find:}

  • What is the radius of the circular loop so formed = ?

Explanation :

Perimeter of the rectangular loop = circumference of the circular loop .

Reason :

because the rectangular loop was transformed to circular loop .

\sf\purple{Perimeter \:of \:the\: rectangular \:loop = 2×(l+b)}

  • l means length

  • b means breadth or width .

\longrightarrow\sf{2×(50+38)}

\longrightarrow\sf{2× 88}

\longrightarrow\sf\pink{176 cm}

  • Circumference of the circular loop = 176 cm

\sf\purple{Circumference \:of \:the\: circular\: loop = 2πr}

\longrightarrow\sf{176 = 2×22/7 × r}

\longrightarrow\sf{176 = 44r/7 }

\longrightarrow\sf{176 × 7 = 44r }

\longrightarrow\sf{1232 = 44r }

\longrightarrow\sf{1232/44 = r }

\longrightarrow\sf\pink{ r = 28 cm}

  • Therefore the radius of the circular loop is 28 cm

@MissOxford

Similar questions