Math, asked by kumodkumar33, 6 months ago

A rectangular marble tile is 3 cm by 5 cm. The number of tile required to cover a floor which measures 12 m by 10 m is _______


Answers

Answered by UNKNOWN3615
11

\large\mathrm\blue{✎~80000~tiles✍}

Question :

to find the number of tiles required to cover a floor!

Given:

Tile--- Length=5cm , Breadth= 3cm

Floor--- Length=12m(1200cm), Breadth=10m(1000)

Solve:

first find the area of the tile

Area of rectangle = length×breadth

= 3cm × 5cm= 15cm²

Find the area of floor

Length = 12m = 1200cm

Breadth= 10m= 1000cm

Area=1200cm × 1000cm

=1200000cm²

Numbers of tiles required

= Area of floor

Area of tiles

= \large\frac{1200000}{15}

= 80000 tiles required

<marquee>✰UNKNOWN3615✰<marquee>

Answered by RoyalKalakar
8

\huge{\underline{\boxed{\boxed{\red{\mathcal{QUESTION:}}}}}}

A rectangular marble tile is 3 cm by 5 cm. The number of tile required to cover a floor which measures 12 m by 10 m is?

\huge{\underline{\boxed{\boxed{\red{\mathcal{SOLUTION:}}}}}}

\star{\underline{\blue{\bf{Given:}}}}

  • Measure of rectangular tile = 3 cm × 5 cm
  • Measure of floor = 12 m × 10 m

\star{\underline{\blue{\bf{To\;Find:}}}}

  • Number of tiles required to cover floor.

\star{\underline{\blue{\bf{Formula\;used:}}}}

  • Area of rectangle = L × B

\star{\underline{\blue{\bf{Diagram:}}}}

\setlength{\unitlength}{2mm}\begin{picture}(10,17)\linethickness{0.5mm}\put(6,2){\dashbox{0.01}(15,8)}\put(3,0){\bf D}\put(3,10){\bf A}\put(23,10){\bf B}\put(23,0){\bf C}\put(10.5,11){\bf\large 5\ cm}\put(-1,5){\bf\large 3\ cm}\end{picture}

Now, first we will find area of tile,

⇒ Area of tile = L × B

⇒ Area of tile = 3 × 5

⇒ Area of tile = 15 cm²

⇒ Area of tile = 0.0015 m²

Now, we will find Area of floor,

⇒ Area of floor = 12 × 10

⇒ Area of floor = 120 m²

Now, Number of tiles required = \sf{\dfrac{120}{0.0015}}

⇒ Number of tiles required = 80,000 tiles.

Hence, 80,000 tiles required to cover a floor.

\star{\underline{\blue{\bf{Extra\;Info:}}}}

\boxed{\begin{minipage}{7 cm}\boxed{\bigstar\:\:\textbf{\textsf{Imp.\:Formulas}}\:\bigstar}\\\\1)\sf\:Area\;of\;rectangle = L\;\times\;B \\\\2)\sf\: Perimeter\;of\;rectangle = 2(L+B)\\\\3)\sf\: Area\;of\;square = (side)^{2} \\\\4)\sf\: Perimeter\;of\;square = side \times side \\\\5)\sf\: Area\;of\;circle = \pi r^{2}\\\\6)\sf\: Perimeter\;of\;circle = 2\pi r\\\end{minipage}}

Similar questions