Math, asked by itzsehaj, 14 hours ago

A rectangular metal sheet of length 44 cm and breadth 11 cm is folded along its length to form a cylinder. Find its volume.
no spam

Answers

Answered by StarFighter
41

Answer:

Given :-

  • A rectangular metal sheet of length 44 cm and breadth 11 cm is folded its length to form a cylinder.

To Find :-

  • What is the volume of cylinder.

Solution :-

\leadsto A rectangular metal sheet of length is 44 cm.

So,

\footnotesize \diamond \: \: \sf\boxed{\bold{Length_{(Rectangular\: Metal\: Sheet)} =\: Circumference_{(Circle)}}}\: \: \: \bigstar\\

Given :

  • Circumference of Circle = 44 cm

According to the question by using the formula we get,

\implies \sf\boxed{\bold{Circumference_{(Circle)} =\: 2{\pi}r}}\\

where,

  • π = Pie or 22/7
  • r = Radius

So, by putting those values we get,

\implies \sf 44 =\: 2 \times \dfrac{22}{7} \times r\\

\implies \sf 44 =\: \dfrac{44}{7} \times r\\

\implies \sf 44 \times \dfrac{7}{44} =\: r

\implies \sf \dfrac{308}{44} =\: r

\implies \sf 7 =\: r

\implies \sf\bold{r =\: 7\: cm}\\

Hence, the radius is 7 cm .

Now, we have to find the volume of cylinder :

Given :

  • Radius = 7 cm
  • Height = 11 cm

According to the question by using the formula we get,

\implies \sf\boxed{\bold{Volume_{(Cylinder)} =\: {\pi}r^2h}}\\

where,

  • π = Pie or 22/7
  • r = Radius
  • h = Height

So, by putting those values we get,

\implies \sf Volume_{(Cylinder)} =\: \dfrac{22}{7} \times (7)^2 \times 11\\

\implies \sf Volume_{(Cylinder)} =\: \dfrac{22}{7} \times (7 \times 7) \times 11\\

\implies \sf Volume_{(Cylinder)} =\: \dfrac{22}{7} \times 49 \times 11\\

\implies \sf Volume_{(Cylinder)} =\: \dfrac{22}{7} \times 539\\

\implies \sf Volume_{(Cylinder)} =\: \dfrac{11858}{7}\\

\implies \sf\bold{\underline{Volume_{(Cylinder)} =\: 1694\: cm^3}}\\

\therefore The volume of the cylinder is 1694 cm³ .

Answered by mathdude500
49

\large\underline{\sf{Solution-}}

Given that,

  • A rectangular metal sheet of length 44 cm and breadth 11 cm is folded along its length to form a cylinder.

Let assume that

  • Radius of cylinder be r cm.

  • Height of cylinder be h cm.

Now, Since a rectangular metal sheet of length 44 cm is folded along its length to form a cylinder.

It means, Circumference of base of cylinder is 44 cm

\rm \: 2 \: \pi \: r \:  =  \: 44 \\

\rm \: 2 \:  \times  \: \dfrac{22}{7} \:  \times r \:  =  \: 44 \\

\rm \: r \:  =  \: \dfrac{44 \times 7}{2 \times 22}  \\

\bf\implies \:r \:  =  \: 7 \: cm \\

Now, we have to find the volume of cylinder whose radius is 7 cm and height 11 cm.

We know, Volume of cylinder of radius r and height h is given by

\boxed{ \rm{ \:Volume_{(Cylinder)} \:  =  \: \pi \:  {r}^{2} \: h \: }} \\

So, on substituting the values, we get

\rm \: Volume_{(Cylinder)} \:  =  \: \dfrac{22}{7}  \times 7 \times 7 \times 11 \\

\rm \:  =  \: 22 \times 7 \times 11 \\

\rm \:  =  \: 1694 \:  {cm}^{3}  \\

Hence,

\rm\implies \:\boxed{ \rm{ \:\rm \: Volume_{(Cylinder)} =  \: 1694 \:  {cm}^{3}   \:  \:  \: }}\\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r  \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} =  \dfrac{4}{3}\pi {r}^{3}  }\\ \\ \bigstar \: \bf{Volume_{(cube)} =  {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Attachments:
Similar questions