Math, asked by bsmheejwan, 4 months ago

A rectangular paper of width 14 cm is rolled along its width and a cylinder of radius of 10 cm is formed find the volume of the cylinder.​

Answers

Answered by Anonymous
8

Given:-

  • Height of the cylinder is 14 cm.
  • Radius of the cylinder is 20 cm.

To find:-

  • Volume of the cylinder.

Solution:-

Here,

  • Height (h) = 14 cm
  • Radius (r) = 20 cm

Volume of cylinder = πr²h

→ 22/7 × 20 × 20 × 14

→ 22 × 20 × 20 × 2

→ 44 × 20 × 20

→ 44 × 400

17600 cm³

Hence,

  • the volume of the cylinder is 17600 cm³.

More to know :-

\sf{Area\;of\;Rectangle\;=\;Length\;\times\;Breadth}

\sf{Area\;of\;Square\;=\;(Side)^{2}}

\sf{Area\;of\;Triangle\;=\;\dfrac{1}{2}\;\times\;Base\;\times\;Height}

\sf{Area\;of\;Parallelogram\;=\;Base\;\times\;Height}

\sf{Area\;of\;Circle\;=\;\pi r^{2}}

\sf{Perimeter\;of\;Rectangle\;=\;2\;\times\;(Length\;+\;Breadth)}

\sf{Perimeter\;of\; Square\;=\;4\;\times\;(Side)}

\sf{Perimeter\;of\;Circle\;=\;2\pi r}


Anonymous: In the question the radius given is 10 cm not 20 cm . ^^''
Answered by Anonymous
28

Question :-

→ A rectangular paper of width 14 cm is rolled along its width and a cylinder of radius of 10 cm is formed find the volume of the cylinder.​

Given :-

Height of this cylinder = 14 cm

Radius of this cylinder = 10 cm

To Find :-

Volume of this cylinder

Solution :-

→ As we know that ,

\huge{\orange{\underline{\underline{Volume\;of\;cylinder\;=\pi r^{2}h}}}}

→ By substituting the values :

\sf Volume\;of\;this\;cylinder\;=\; 2\pi r^{2}h\\\\\longrightarrow 2 \times \dfrac{22}{7} \times 10 \times 10 \times 14 \\\\\longrightarrow 2 \times 22 \times 10 \times 10 \times 2 \\\\\longrightarrow 8800\;cm^{3}

∴ Volume of this cylinder is 8800 cm³

Similar questions