Math, asked by arorayuvraj06, 2 months ago

A rectangular pavement is of length 250 m and width 20 m. How many square tiles, each of side length 5 m, are needed to tile the pavement?

Answers

Answered by Anonymous
101

\large\sf\underline{Given\::}

  • Length of rectangular pavement = 250 m

  • Breadth of rectangular pavement = 20 m

  • Length of square tile = 5 m

\large\sf\underline{To\:find\::}

  • Number of square tiles needed to tile the pavement .

\large\sf\underline{Concept\::}

Here length and breadth of the rectangular pavement to be tiled is given as 250 m and 20 m. Length of square tiles is also given as 5 m. We are asked to calculate the number of tiles required for tiling the rectangular pavement. In order to calculate so we would calculate the area of the pavement and then the area of the tiles. After doing so we would divide the area of rectangular pavement by the area of the square tile. Following this all we will get the required answer. Let's begin !

\large\sf\underline{Formula\:to\:be\:used\::}

  • Area of rectangle = \bf\color{teal}{l \times b }

  • Area of square = \bf\color{teal}{(l)^{2}}

where l stands for length and b for breadth.

  • Number of tiles = \bf\color{teal}{\frac{Area\:of\:pavement}{Area\:of\:tiles}}

\large\sf\underline{Solution\::}

Let's first calculate the area of the pavement :

\sf\:Area\:of\:the\:pavement\:=\:l \times b

  • We are using this formula since the pavement is rectangular in shape

Let's substitute the given values in the formula :

\sf\implies\:Area\:of\:the\:pavement\:=\:250 \times 20

\small{\underline{\boxed{\mathrm\red{\implies\:Area\:of\:the\:pavement\:= 5000\:sq.m}}}}

Now let's calculate the area of the tiles :

\sf\:Area\:of\:the\:tiles\:=\:(l)^{2}

  • We are using this formula since the tiles are squared shape

Let's substitute the given values in the formula :

\sf\implies\:Area\:of\:the\:tiles\:=\:(5)^{2}

\sf\implies\:Area\:of\:the\:tiles\:=\:5 \times 5

\small{\underline{\boxed{\mathrm\red{\implies\:Area\:of\:the\:tiles\:= 25\:sq.m}}}}

Now let's calculate the number of the tiles :

\bf\:Number\:of\:tiles = \frac{Area\:of\:pavement}{Area\:of\:tiles}

  • Substituting the values we got

\sf\implies\:Number\:of\:tiles\:=\:\frac{5000}{25}

  • Reducing the fraction in lower terms

\sf\implies\:Number\:of\:tiles\:=\:\cancel{\frac{5000}{25}}

\small{\underline{\boxed{\mathrm\red{\implies\:Number\:of\:the\:tiles\:= 200}}}}

_________________________

\dag\:\underline{\sf So\:the\:required\:number\:of\:tiles\:is\:200.}

!! Hope it helps !!

Answered by BrainlicaLDoll
47

\sf\bold{\underline{Question:}}

A rectangular pavement is of length 250 m and width 20 m. How many square tiles, each of side length 5 m, are needed to tile the pavement?

\sf\bold{\underline{Given:}}

\sf{\mapsto Length\:of\:pavement\:= \:250 \:m}

\sf{\mapsto Length\:of\:square\:tiles\:= \:5 \:m}

\sf{\mapsto Width \:of\:pavement\: =\: 20 \:m}

\dag\sf{First\:we\:will\:find\:area\:of\:pavement}

\sf\bold{\underline{Solution:}}

\sf{Area\:of\:pavement\:={\boxed{\sf Length\times\:Width}}}

\sf\longrightarrow{250\times20\:=\:5000{m}^{2}}

\dag\sf{Second\:we\:will\:find\:area\:of\:square\:tiles}

\sf{Area\:of\:square\:tiles={\boxed{\sf{Length}^{2}}}}

\sf\longrightarrow{5\times5\:=\:25{m}^{2}}

\dag\sf{Third\:we\:will\:find\:tiles\:needed}

\sf{Number\:of\:tiles\:needed\:=\frac{\sf Area\:of\:pavement}{\sf Area\:of\:one\:tile}\:=\: \cancel{\frac{5000}{25}}\:=\:200}

\sf\green{Number\:of\:tiles\:needed\:=\:200\:tiles}

Similar questions