Math, asked by vs8882560, 5 months ago

A rectangular piece of paper of dimensions 20 cm x 14 cm is rolled along the breadth to form a cylinder.
Find the radius of the base of the cylinder so formed.

Answers

Answered by ItzVenomKingXx
3

 \bf The \:  circumference  \: of \:  the \:  base \:  is \:  20 \: cm \:  we \:  know,  \\   \bf\: The  \: circumference \:  of  \: the \: cylinder = 2 \times  \frac{22}{7}  \times r \\ \bf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 20= \frac{44}{7} \times r \\  \bf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 20× \frac{7}{44}  = r \\ \bf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \huge \boxed  {3.18 = r} \\ \bf hence,  \: Radius \:  of \:  the \:  cylinder  \: is  \: 3.18cm

{\mathbb{\colorbox {orange} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {blue} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {aqua} {@ItzVenomKingXx}}}}}}}}}}}}}}}

Answered by sahildhingra2572005
2

given,

length of rectangle = 20 cm

breath of rectangle = 14 cm

to find,

1.radius of cylinder

according to diagram

circumference of circle = 14 cm

so,

2πr = 14 cm

2×22÷7 × r = 14

44÷7 × r= 14

6.28 × r = 14

r= 2.22 cm

Similar questions