A rectangular plot of land is 103 / 4 m long and 47 / 2 m wide. Find the cost
of fencing the plot at the rate of Rs. 32 per metre.
Answers
this is the solution
Step-by-step explanation:
hope it helps
Answer:
A rectangular plot of land is 103/4 m long and 47/2 m wide. Find the perimeter and area of the plot.
Step-by-step explanation:
Solution :
\underline{\bold{Given:}}
Given:
Length \: of \: the \: rectangular \:plot = \frac{103}{4} \: mLengthoftherectangularplot=
4
103
m
Breadth \: of \: the \: rectangular \: plot = \frac{47}{3} \: mBreadthoftherectangularplot=
3
47
m
\underline{\bold{To\:Find:}}
ToFind:
Perimeter of the plot.
Area of the plot.
\fbox{\pink{Perimeter=2 (length +breadth)}}
Perimeter=2 (length +breadth)
\begin{gathered}\implies Perimeter=2 (length +breadth) \\ \implies Perimeter=2 ( \frac{103}{4} \: m + \frac{47}{3} \: m) \\ \implies Perimeter=2 (\frac{309 +188 }{12} \: m) \\ \implies Perimeter=2 \times \frac{497}{12} \: m \\ \implies Perimeter = \frac{497}{6} \: m \\ \implies Perimeter = 82 \frac{5}{6} \: m\end{gathered}
⟹Perimeter=2(length+breadth)
⟹Perimeter=2(
4
103
m+
3
47
m)
⟹Perimeter=2(
12
309+188
m)
⟹Perimeter=2×
12
497
m
⟹Perimeter=
6
497
m
⟹Perimeter=82
6
5
m
\boxed{\green{\therefore{Perimeter\:of\:the\:plot=82 \frac{5}{6} \: m}}}
∴Perimeteroftheplot=82
6
5
m
\rule{193}{1}
\boxed{\blue{Area=length\times breadth}}
Area=length×breadth
\begin{gathered}\implies Area=length \times breadth \\ \implies Area= \frac{103}{4} \: m \times \frac{47}{3} \: m \\ \implies Area= \frac{4841}{12} \: m^2 \\ \implies Area=403 \frac{5}{12} \: m^2 \end{gathered}
⟹Area=length×breadth
⟹Area=
4
103
m×
3
47
m
⟹Area=
12
4841
m
2
⟹Area=403
12
5
m
2
\boxed{\green{\therefore{Area\:of\:the\:plot=403\frac{5}{12} \: m^2}}}
∴Areaoftheplot=403
12
5
m
2
\rule{193}{2}
#AnswerWithQuality