Math, asked by KioraKoffee, 1 month ago

A rectangular plot of land is 103 / 4 m long and 47 / 2 m wide. Find the cost
of fencing the plot at the rate of Rs. 32 per metre.

Answers

Answered by aaradhyabtsarmy
3

this is the solution

Step-by-step explanation:

hope it helps

Attachments:
Answered by biswajitpanda34
1

Answer:

A rectangular plot of land is 103/4 m long and 47/2 m wide. Find the perimeter and area of the plot.

Step-by-step explanation:

Solution :

\underline{\bold{Given:}}

Given:

Length \: of \: the \: rectangular \:plot = \frac{103}{4} \: mLengthoftherectangularplot=

4

103

m

Breadth \: of \: the \: rectangular \: plot = \frac{47}{3} \: mBreadthoftherectangularplot=

3

47

m

\underline{\bold{To\:Find:}}

ToFind:

Perimeter of the plot.

Area of the plot.

\fbox{\pink{Perimeter=2 (length +breadth)}}

Perimeter=2 (length +breadth)

\begin{gathered}\implies Perimeter=2 (length +breadth) \\ \implies Perimeter=2 ( \frac{103}{4} \: m + \frac{47}{3} \: m) \\ \implies Perimeter=2 (\frac{309 +188 }{12} \: m) \\ \implies Perimeter=2 \times \frac{497}{12} \: m \\ \implies Perimeter = \frac{497}{6} \: m \\ \implies Perimeter = 82 \frac{5}{6} \: m\end{gathered}

⟹Perimeter=2(length+breadth)

⟹Perimeter=2(

4

103

m+

3

47

m)

⟹Perimeter=2(

12

309+188

m)

⟹Perimeter=2×

12

497

m

⟹Perimeter=

6

497

m

⟹Perimeter=82

6

5

m

\boxed{\green{\therefore{Perimeter\:of\:the\:plot=82 \frac{5}{6} \: m}}}

∴Perimeteroftheplot=82

6

5

m

\rule{193}{1}

\boxed{\blue{Area=length\times breadth}}

Area=length×breadth

\begin{gathered}\implies Area=length \times breadth \\ \implies Area= \frac{103}{4} \: m \times \frac{47}{3} \: m \\ \implies Area= \frac{4841}{12} \: m^2 \\ \implies Area=403 \frac{5}{12} \: m^2 \end{gathered}

⟹Area=length×breadth

⟹Area=

4

103

3

47

m

⟹Area=

12

4841

m

2

⟹Area=403

12

5

m

2

\boxed{\green{\therefore{Area\:of\:the\:plot=403\frac{5}{12} \: m^2}}}

∴Areaoftheplot=403

12

5

m

2

\rule{193}{2}

#AnswerWithQuality

Similar questions