Math, asked by laxmi5229, 8 months ago

م
A rectangular plot of land is 25 3/4m long and 15 2/3m wide. Find the perimeter and area of the plot.​

Answers

Answered by Skyllen
9

Given

 \tt  \implies Length(l)  =  25 \dfrac{3}{4}  =  \dfrac{103}{4} m \\  \\ \tt  \implies Breadth(b) = 15  \dfrac{2}{3}  =  \dfrac{47}{3} m \\ \\

Formula

\tt  \implies Perimeter  \: of \: rectangle= 2(l + b) \\\tt  \implies Area \:  of \: rectangle=  l \times b \\ \\

Answer

Perimeter of rectangular plot:

\tt  \implies = 2(length + breadth) \\  \\ \tt  \implies = 2( \dfrac{103}{4}  +  \dfrac{47}{3} ) \\  \\ \tt  \implies = 2 \times ( \dfrac{3 \times 103 + 4 \times 47}{4 \times 3} ) \\  \\ \tt  \implies = 2 \times ( \dfrac{309 + 188}{12} ) \\  \\ \tt  \implies = 2 \times ( \dfrac{497}{12} ) \\  \\ \tt  \implies =  \frac{497}{6}  \\  \\ \large \implies \boxed {\boxed {\tt \blue {= 82.8m {}^{2} }}} \\

________________________

Area of rectangular plot:

 \tt \implies = length \:  \times  \: breadth \\  \\ \tt \implies =  \dfrac{103}{4}  \times  \dfrac{47}{3}  \\  \\ \tt \implies =  \frac{4841}{12}  \\  \\ \large \implies \boxed {\boxed {\tt \blue { = 403.41m {}^{2} }}} </p><p>

Answered by Anonymous
2

Given ,

 \star \:  \sf Length  = 25 \frac{3}{4}  \:  \: m \\   \\ \star \: \sf</p><p>Breadth  = 15 \frac{2}{3}  \:  \: m

We know that , the perimeter of rectangle is given by

 \sf \large \star \:  \:  \fbox{Perimeter =  2(l + b) }

Thus ,

 \sf \mapsto Perimeter = 2( 25 \frac{3}{4} + 15 \frac{2}{3}  ) \\  \\  \sf \mapsto Perimeter = 2( \frac{103}{4}  +  \frac{47}{3} ) \\  \\ \sf \mapsto Perimeter = 2( \frac{309 + 188}{12} ) \\  \\  \sf \mapsto Perimeter = \frac{497}{6}  \\  \\  \sf \mapsto Perimeter =82.2 \:  \:m

 \therefore \sf \underline{The \:  perimeter \:  of  \: rectangle \:  is  \: 82.2 \:  m}

We know that , the area of rectangle is given by

 \star \:  \:  \large \sf \fbox{Area = length \times  breadth }

Thus ,

 \sf \mapsto Area =  25 \frac{3}{4}   \times 15  \frac{2}{3}  \\  \\ \sf \mapsto Area =  \frac{103}{4}  +  \frac{47}{3} \\ \\ \sf \mapsto  Area = \frac{4841}{12}  \\  \\ \sf \mapsto Area = 403.41  \:  \:  {m}^{2}

 \therefore \sf \underline{The  \: area  \: of \:  rectangle \:  is  \: 403.41 \:  {m}^{2} }

Similar questions