Math, asked by harshkumargupta49, 3 days ago

a rectangular sheet has an area of 100 square metre and a perimeter of 50 m. find it's diagonals? Explain​

Answers

Answered by SparklingBoy
104

 \large \dag Question :-

A rectangular sheet has an area of 100 m² and a perimeter of 50 m. Find it's diagonals.

 \large \dag Answer :-

\red\dashrightarrow\underline{\underline{\sf  \green{The   \: Original \:  Fraction  \: is \:  \sqrt{17}\:m }} }\\

 \large \dag Step by step Explanation :-

Let us Assume that,

  • Lenght of Sheet =  \large \rm l m

  • Breadth of Sheet =  \large \rm b m

We Know that Area of rectangle is :

 \bf \red\bigstar \: \: \orange{ \underbrace{ \underline{   \blue{Area =l \times b }}}}

So in the given question :

:\longmapsto \rm Area=  l \times b  \\

:\longmapsto \rm \large\green{ \underline{ \underline{ \rm l \times b = 100}}} \:   -  -  - (1) \\

Also We Know that Perimeter of rectangle is :

 \bf \red\bigstar \: \: \orange{ \underbrace{ \underline{   \blue{Perimeter =2(l + b) }}}}

So in the given question :

:\longmapsto \rm Perimeter = 2(l + b) \\

:\longmapsto \rm 2(l + b) = 50 \\

:\longmapsto \rm l + b =    \cancel\frac{50}{2}  \\

:\longmapsto \rm l + b = 25 \\

:\longmapsto \rm \large\green{ \underline{ \underline{ \rm l = 25 - b}}}\:   -  -  - (2) \\

Substituting (2) in (1)

:\longmapsto \rm (25 - b) \times  {b} = 100 \\

:\longmapsto \rm 25b -  {b}^{2}  = 100 \\

:\longmapsto \rm  {b}^{2}  - 25b + 100 = 0 \\

:\longmapsto \rm b - 5b - 20b + 100 = 0 \\

:\longmapsto \rm b(b - 5) - 20(b - 5)  = 0 \\

:\longmapsto \rm (b - 5)(b - 20) = 0 \\

\purple{ \large :\longmapsto  \underline {\boxed{{\bf b = 5 \:  \: o r \:  \: b = 20} }}} \\

Putting Value of b in (2) :

\purple{ \large :\longmapsto  \underline {\boxed{{\bf l = 20 \:  \: o r \:  \: l = 5} }}} \\

The two sides of rectangle are 20 m and 5 m

Therefore,

:\longmapsto \rm Diagonal = \sqrt{ {20}^{2}  +  {5}^{2} }  \\

:\longmapsto \rm Diagonal =  \sqrt{400 + 25}  \\

:\longmapsto \rm Diagonal = \sqrt{425}  \\

\green{  :\longmapsto  \underline {\boxed{{\bf Diagonal= 5 \sqrt{17} \: m } }}} \\

Answered by Anonymous
108

Given :-

  • Area of rectangular sheet = 100 m²
  • Perimeter of rectangular sheet = 50 m

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

To Find :-

  • Find its diagonals .

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Formula Used :-

Area of rectangle :

{\large{\red{\bigstar \:  \:  \:  \:  \:  \: {\orange{\underbrace{\underline{\green{\bf{Area = length  \times Breadth  }}}}}}}}}

{\large{\red{\bigstar \:  \:  \:  \:  \:  \: {\orange{\underbrace{\underline{\green{\bf{Perimeter = 2(length + Breadth ) }}}}}}}}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Solution :-

Let :

  • Length = l
  • Breadth = b

According to Question :

{\large{:{\longmapsto{\bf{Area = l  \times b}}}}}

{\large{:{\longmapsto{\bf{100 = l  \times b}}}}}

{\large{\orange{\dashrightarrow{\blue{\underline{\bf{l  \times b = 100}}}}}}} -  -  - (1)

Now :

{\large{:{\longmapsto{\bf{Perimeter = 2(L + B)}}}}}

{\large{:{\longmapsto{\bf{50= 2(L + B)}}}}}

{\large{:{\longmapsto{\bf{L + B =  {\cancel\frac{50}{2} }}}}}}

{\large{\orange{\dashrightarrow{\blue{\underline{\bf{l  + b = 25}}}}}}} -  -  - (2)

Substituting the values :

{\large{:{\longmapsto{\bf{(25 - b)  \times b = 100}}}}}

{\large{:{\longmapsto{\bf{25 b -  {b}^{2} = 100}}}}}

{\large{:{\longmapsto{\bf{ {b}^{2}   - 25 + 100= 0}}}}}

{\large{:{\longmapsto{\bf{b - 5b -20b +  100 = 0}}}}}

{\large{:{\longmapsto{\bf{b  (b - 5) - 20(b - 5) = 0}}}}}

{\large{:{\longmapsto{\bf{(b - 5)(b - 20)= 0}}}}}

{\large{\red{:{\twoheadrightarrow{\purple{\underline{\overline{\boxed{\bf{b = 5 , b = 20}}}}}}}}}}

Diagonal :

{\large{:{\longmapsto{\bf{ \sqrt{ {20}^{2}  +  {5}^{2} } }}}}}

{\large{:{\longmapsto{\bf{ \sqrt{20 \times 20  +  5 \times 5} }}}}}

{\large{:{\longmapsto{\bf{ \sqrt{400 + 25} }}}}}

{\large{:{\longmapsto{\bf{ \sqrt{425} }}}}}

{\large{\red{:{\twoheadrightarrow{\purple{\underline{\overline{\boxed{\bf{Diagonal = 5 \sqrt{17} m}}}}}}}}}}

Hence :

{\huge{\purple{\underline{\red{\underline{\pink{\pmb{\mathfrak{Diagonal = 5 \sqrt{17} m}}}}}}}}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Similar questions