a rectangular sheet of metal foil with dimensions 66 CM x 12 cm is rolled to form cylinder of height 12 cm find the volume of cylinder
Answers
Answered by
5
Answer : 4,158 cm³
Solution :
__________
Given that : Dimensions of rectangle = 66cm ×12cm and Height of cylinder = 12 cm
Now, according to the question :
Area of rectangle = Area of cylinder
![66 \times 12 = 2\pi \times r \times 12 \\ \\ = > 66 \times 12 = 2 \times \frac{22}{7} \times r \times 12 \\ \\ = > r = \frac{21}{2} \: cm 66 \times 12 = 2\pi \times r \times 12 \\ \\ = > 66 \times 12 = 2 \times \frac{22}{7} \times r \times 12 \\ \\ = > r = \frac{21}{2} \: cm](https://tex.z-dn.net/?f=66+%5Ctimes+12+%3D+2%5Cpi+%5Ctimes+r+%5Ctimes+12+%5C%5C++%5C%5C++%3D++%26gt%3B+66++%5Ctimes+12+%3D+2+%5Ctimes++%5Cfrac%7B22%7D%7B7%7D++%5Ctimes+r+%5Ctimes+12+%5C%5C++%5C%5C++%3D++%26gt%3B+r+%3D++%5Cfrac%7B21%7D%7B2%7D++%5C%3A+cm)
Now, volume of cylinder :
![\pi {r}^{2} h \\ \\ = > \frac{22}{7} \times { (\frac{21}{2}) }^{2} \times 12 \\ \\ = > \frac{22}{7} \times \frac{21}{2} \times \frac{21}{2} \times 12 \\ \\ = > 4158 \: {cm}^{3} \pi {r}^{2} h \\ \\ = > \frac{22}{7} \times { (\frac{21}{2}) }^{2} \times 12 \\ \\ = > \frac{22}{7} \times \frac{21}{2} \times \frac{21}{2} \times 12 \\ \\ = > 4158 \: {cm}^{3}](https://tex.z-dn.net/?f=%5Cpi+%7Br%7D%5E%7B2%7D+h+%5C%5C++%5C%5C++%3D++%26gt%3B++%5Cfrac%7B22%7D%7B7%7D++%5Ctimes++%7B+%28%5Cfrac%7B21%7D%7B2%7D%29+%7D%5E%7B2%7D++%5Ctimes+12+%5C%5C++%5C%5C++%3D++%26gt%3B++%5Cfrac%7B22%7D%7B7%7D++%5Ctimes++%5Cfrac%7B21%7D%7B2%7D++%5Ctimes++%5Cfrac%7B21%7D%7B2%7D++%5Ctimes+12+%5C%5C++%5C%5C+++%3D++%26gt%3B+4158++%5C%3A+%7Bcm%7D%5E%7B3%7D+)
So, the volume will be 4,158 cm³
Solution :
__________
Given that : Dimensions of rectangle = 66cm ×12cm and Height of cylinder = 12 cm
Now, according to the question :
Area of rectangle = Area of cylinder
Now, volume of cylinder :
So, the volume will be 4,158 cm³
Similar questions