Math, asked by abhilashpalit2019tab, 5 months ago

A rectangular tank is 12.50 m long and 6.75 m deep . If 300 cubic metres of water be drawn from the tank , the level of water in the tank goes down by 2.0 m . Calculate The breadth of the tank.

Answers

Answered by Itzsweetcookie
0

YOUR QUESTION

A rectangular tank is 12.50 m long and 6.75 m deep . If 300 cubic metres of water be drawn from the tank , the level of water in the tank goes down by 2.0 m . Calculate The breadth of the tank.

MY ANSWER

log

log 10

log 10

log 10 250=log(10×25)=log

log 10 250=log(10×25)=log 10

log 10 250=log(10×25)=log 10

log 10 250=log(10×25)=log 10 10+log

log 10 250=log(10×25)=log 10 10+log 10

log 10 250=log(10×25)=log 10 10+log 10

log 10 250=log(10×25)=log 10 10+log 10 25=1+log

log 10 250=log(10×25)=log 10 10+log 10 25=1+log 10

log 10 250=log(10×25)=log 10 10+log 10 25=1+log 10

log 10 250=log(10×25)=log 10 10+log 10 25=1+log 10 25.....................(log

log 10 250=log(10×25)=log 10 10+log 10 25=1+log 10 25.....................(log 10

log 10 250=log(10×25)=log 10 10+log 10 25=1+log 10 25.....................(log 10

log 10 250=log(10×25)=log 10 10+log 10 25=1+log 10 25.....................(log 10 10=1)

log 10 250=log(10×25)=log 10 10+log 10 25=1+log 10 25.....................(log 10 10=1) 2log

log 10 250=log(10×25)=log 10 10+log 10 25=1+log 10 25.....................(log 10 10=1) 2log 10

log 10 250=log(10×25)=log 10 10+log 10 25=1+log 10 25.....................(log 10 10=1) 2log 10

log 10 250=log(10×25)=log 10 10+log 10 25=1+log 10 25.....................(log 10 10=1) 2log 10 x+1=1+log

log 10 250=log(10×25)=log 10 10+log 10 25=1+log 10 25.....................(log 10 10=1) 2log 10 x+1=1+log 10

log 10 250=log(10×25)=log 10 10+log 10 25=1+log 10 25.....................(log 10 10=1) 2log 10 x+1=1+log 10

log 10 250=log(10×25)=log 10 10+log 10 25=1+log 10 25.....................(log 10 10=1) 2log 10 x+1=1+log 10 25

log 10 250=log(10×25)=log 10 10+log 10 25=1+log 10 25.....................(log 10 10=1) 2log 10 x+1=1+log 10 25i.e. 2log

log 10 250=log(10×25)=log 10 10+log 10 25=1+log 10 25.....................(log 10 10=1) 2log 10 x+1=1+log 10 25i.e. 2log 10

log 10 250=log(10×25)=log 10 10+log 10 25=1+log 10 25.....................(log 10 10=1) 2log 10 x+1=1+log 10 25i.e. 2log 10

log 10 250=log(10×25)=log 10 10+log 10 25=1+log 10 25.....................(log 10 10=1) 2log 10 x+1=1+log 10 25i.e. 2log 10 x=log

log 10 250=log(10×25)=log 10 10+log 10 25=1+log 10 25.....................(log 10 10=1) 2log 10 x+1=1+log 10 25i.e. 2log 10 x=log 10

log 10 250=log(10×25)=log 10 10+log 10 25=1+log 10 25.....................(log 10 10=1) 2log 10 x+1=1+log 10 25i.e. 2log 10 x=log 10

log 10 250=log(10×25)=log 10 10+log 10 25=1+log 10 25.....................(log 10 10=1) 2log 10 x+1=1+log 10 25i.e. 2log 10 x=log 10 25

log 10 250=log(10×25)=log 10 10+log 10 25=1+log 10 25.....................(log 10 10=1) 2log 10 x+1=1+log 10 25i.e. 2log 10 x=log 10 25But 2logx=logx

log 10 250=log(10×25)=log 10 10+log 10 25=1+log 10 25.....................(log 10 10=1) 2log 10 x+1=1+log 10 25i.e. 2log 10 x=log 10 25But 2logx=logx 2

log 10 250=log(10×25)=log 10 10+log 10 25=1+log 10 25.....................(log 10 10=1) 2log 10 x+1=1+log 10 25i.e. 2log 10 x=log 10 25But 2logx=logx 2 .....................(Power law)

log 10 250=log(10×25)=log 10 10+log 10 25=1+log 10 25.....................(log 10 10=1) 2log 10 x+1=1+log 10 25i.e. 2log 10 x=log 10 25But 2logx=logx 2 .....................(Power law) log

log 10 250=log(10×25)=log 10 10+log 10 25=1+log 10 25.....................(log 10 10=1) 2log 10 x+1=1+log 10 25i.e. 2log 10 x=log 10 25But 2logx=logx 2 .....................(Power law) log 10

log 10 250=log(10×25)=log 10 10+log 10 25=1+log 10 25.....................(log 10 10=1) 2log 10 x+1=1+log 10 25i.e. 2log 10 x=log 10 25But 2logx=logx 2 .....................(Power law) log 10

2 x =log 10 25

x =log 10 25x 2 =25

i.e. x=5∴log 10 2x=log 10 10=1

Answered by michaelnavant
0

Answer:

answer for the given question

Attachments:
Similar questions