Math, asked by 425rehan, 10 months ago

A rectangular tank with length 50 m and width 30 m contains 36 litres of
water. Find the depth of the water.

i need the answer with working

Answers

Answered by Anonymous
9

Given :

  • Length of rectangular tank is 50 m.
  • Width of the rectangular tank is 30 m.
  • Volume of tank is 36 litre i.e 36000 cm³

To Find :

  • Depth (h) of the container

Solution :

Given in the question, the volume of the container, so let's use the formula of volume.

Formula :

\large{\boxed{\mathtt{\blue{Volume\:=\:l\:\times\:b\:\times\:h}}}}

Where,

  • l = length
  • b = breadth (width)
  • h = height (depth)

Block in the data,

\longrightarrow\sf{36000\:=\:50\:\times\:100\:+\:30\:\times\:100\:\times\:\:100h}

\longrightarrow\mathtt{36000\:=\:5000\:\times\:\:3000\:\times\:\:100h}

\longrightarrow \mathtt{36000\:=\:15000\:+\:100h}

\longrightarrow \mathtt{36000-15000\:=\:100h}

\longrightarrow \mathtt{21000\:=\:100h}

\longrightarrow \mathtt{h\:=\:{\dfrac{21000}{100}}}

\longrightarrow \mathtt{h\:=\:210}

Answered by Anonymous
5

ᴀɴsᴡᴇʀ :

\:\bullet Length(L) = 50m

\:\bullet Width(B) = 30m

\:\bullet Volume(V) of container = 36litres = 36000 cubic.m(1 litre = 0.001 cu.m)

 \rule{100}2

\:\bullet Here, We have to find Depth of container and Depth = Height = "H".

\:\bullet Volume of container = Volume of Cuboid.

\underline{\dag\:\textsf{Let's \: head \: to \: the \: question \: now:}}

\normalsize\ : \implies{\boxed{\sf{Volume \: of \: Cuboid = L \times\ B \times\ H}}}

\normalsize\ : \implies\sf\ 0.036 = 50 \times\ 30 \times\ H \\ \\ \normalsize\ : \implies\sf\ 0.036 = 1500 \times\ H \\ \\ \normalsize\ : \implies\sf\frac{\cancel{0.036}}{\cancel{1500}} = H \\ \\ \normalsize\ : \implies\sf\ H = 0.0216m

\scriptsize\sf{\: \: \: \: \: \:( \therefore\ \: \red{1m = 100cm}) }

\normalsize\ : \implies\sf\ H = 0.0216 \times\ 100 = 2.16cm \\ \\ \normalsize\ : \implies{\underline{\boxed{\sf \blue{Height \: of \: tank = 2.16cm}}}}

Similar questions