Math, asked by Sreyashi566, 3 months ago

A rectangular tin 20 cm long and 12 cm wide contains 1680 cm³ of flour. what is the depth of flour in the tin if it is spread evenly.​

Answers

Answered by dolemagar
25

Volume of the tin= b×h

1680cm³= 20cm×12cm×h

h= 1680cm³/240cm²

=140cm/20

=7cm

Therefore, the depth is 7cm

Answered by EleanorAlaine
121

Need To Find :-

  • The depth of the flour in the tin ‎. ‎ ‎ ‎ ‎ ‎

‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎━━━━━━━━━━━━━━

According to the question, we are given length of a rectangular tin is 20 cm & breadth of the rectangular tin is 12 cm.And finally, volume of flour the rectangular tin contains is 1680 cm³.For solving this question we need to know one formula. Here :-

  • Volume of rectangle = l × b × h

Where, l means length of the rectangle, b means breadth of the rectangle and h means height (depth) of the rectangle.So,we just need to put the given values. Let's do it!

Calculation :-

\implies{\sf{\pmb{Volume \: _{(Rectangle )} =l \times b \times h \:cm³}}}\\ \\ \implies{\sf{1680=20 \times 12 \times h}}\\ \\ \implies{\sf{1680=240 \times h}}\\ \\  \implies{\sf{\dfrac{\cancel{1680}}{\cancel{240}}=h}}\\ \\ \implies\boxed{\tt{\pmb{\red{7\:cm =h}}}}

\:

\\  \therefore \underline{ \frak { \pmb{The \: depth \: of \:  the \:  flour \: in \: the \:  tin ‎ \: will \: be ‎ \: \purple{7 \:  cm  }. }}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\large {\boxed{\sf{\mid{\overline {\underline \red {{Know\:More\::}}}\mid}}}}\\\\

  •  \sf Area_{(Rectangle)} = Length \times Breadth

  •   \sf Perimeter _{(Rectangle)} = 2 (Length + Breadth)

  •  \sf Area_{(Square)} = Side \times Side

  •  \sf Perimeter _{(Square)} = 4 \times Side

  •   \sf Area_{(Trapezium)} = \dfrac{1}{2} \times Height \times (a + b )

  •  \sf Area_{(Parallelogram)} = Base \times Height

  •  \sf Area_{(Triangle)} = \dfrac{1}{2} \times Base \times Height

  •  \sf Area_{(Rhombus)} = \dfrac{1}{2} \times Diagonal _{1}\times Diagonal_{2}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions