Math, asked by Mihir5142, 11 months ago

A rectangular tin 9 cm long 7cm wide contains 378cm cube of flour. What is the depth of flour in the tin if it is spread evenly?

Answers

Answered by Brâiñlynêha
18

\huge\mathbb{SOLUTION:-}

\sf\bullet Length\:of\:tin= 9cm\\ \\ \sf\bullet Breadth=7cm\\ \\ \sf\bullet Volume=378cm{}^{3}

  • We have to find the Height of tin

\underline{\bigstar{\sf{Volume\:of\:cuboid=length\times breadth\times height}}}

So

\underline{\dag{\sf{\red{\:\: According\:To\: Question}}}}

\sf\implies Volume=l\times b\times h\\ \\ \sf\implies 378=9\times 7\times h\\ \\ \sf\implies 378=63\times h\\ \\ \sf\implies \cancel{\dfrac{378}{63}}=h\\ \\ \sf\implies 6=h\\ \\ \sf\implies \:\:or\:\: Height=6cm

\underline{\bigstar{\sf{Depth\:of\:tin=6cm}}}

Answered by Anonymous
19

AnswEr :

Depth = 6 cm.

\bf{We\:have}\begin{cases}\sf{Length\:of\:rectangular\:tin\:=\:9\:cm}\\ \sf{Breadth\:(wide)\:of\:rectangular\:tin\:=\:7cm}\\ \sf{Volume\:of\:tine\:or\:capacity=\:378\:cm^{3} }\end{cases}}

\bf{\large{\underline{\rm{\red{To\:find\::}}}}}

The depth (height) of flour in the tin if it's spread evenly.

\bf{\large{\underline{\underline{\tt{\green{Explanation\::}}}}}}

We know that formula of the volume of the cuboid :

\bf{\large{\boxed{\sf{Volume\:of\:cuboid\:=\:Length*breadth*height\:\:\:\:\big(cubic\:unit\big)}}}}}}}

A/q

\dashrightarrow\tt{Volume\:=\:lbh}\\\\\\\\\dashrightarrow\tt{378\:cm^{3} \:=\:9cm*7cm*h}\\\\\\\\\dashrightarrow\tt{378\:cm^{3} \:=\:63\;cm^{2} *h}\\\\\\\\\dashrightarrow\tt{h\:=\:\cancel{\dfrac{378cm^{3} }{63cm^{2}} } }\\\\\\\\\dashrightarrow\tt{\red{h\:=\:6\:cm}}

∴ The depth of flour in the tin is 6 cm.

Similar questions