Math, asked by RameshBabu28, 5 months ago

a rectangular water reservoir contains 42000 litre of water. Find the depth of the water in the reservoir if its base measure 6m by 3.5m.​

Answers

Answered by manojkuchala1984
2

We know that volume of cuboid = length×breadth×height

So, height =Volume/lb

h=V/lb

h=42/(6×3.5)

h=2 m

follow me please

Answered by thebrainlykapil
94

\large\underline{ \underline{ \sf \maltese{ \: Question:- }}}

  • A rectangular water reservoir contains 42000 litre of water. Find the depth of the water in the reservoir if its base measure 6m by 3.5m.

\large\underline{ \underline{ \sf \maltese{ \: Given:- }}}

\red{\boxed{ \sf \blue{ 1 {m}^{3}  \:  =  \: 1000 \: litres }}} \\  \\

  • Volume of the Reservoir = \sf\green{42000\: Litres}

\qquad \quad {:} \longrightarrow \sf{\sf{\frac{42000}{1000}  \:  {m}^{3} }}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{\frac{42\cancel{000}}{1\cancel{000}}  \:  {m}^{3} }}\\ \\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{Volume \: of \: Reservoir \: = \: 42 {m}^{3}     }}}

  • Length of the Reservoir = \sf\green{6m}
  • Breadth of Reservoir = \sf\green{3.5m}

━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{ \underline{ \sf \maltese{ \: Solution:- }}}

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\: Area \: of \: the \: Base \: of \: the \: Reservoir \:  =  \: length \:  \times  \: height  }} }\\ \\\end{gathered}\end{gathered}\end{gathered}

\qquad \quad {:} \longrightarrow \sf{\sf{area \: =  \:( \:  6 \:  \times  \: 3.5 ) \:  {m}^{2} }} \\  \\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{ \: Area \:of\: Base= \: 21 {m}^{2}  }}}

━━━━━━━━━━━━━━━━━━━━━━━━━

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\: Ar.\: of \: the \: Base \: \times \: Height \: = \: Volume \:of \: Reservoir  }} }\\ \\\end{gathered}\end{gathered}\end{gathered}

\qquad \quad {:} \longrightarrow \sf{\sf{Height \: or \: Depth \: of \: the \: Reservoir  \: =  \:  \frac{Volume }{Area \: of \: Base } }} \\  \\

\qquad \quad {:} \longrightarrow \sf{\sf{Height \: or \: Depth \: = \: \frac{42}{21}   }} \\  \\

\qquad \quad {:} \longrightarrow \sf{\sf{Height \: or \: Depth \: = \: \cancel{\frac{42}{21} }  }} \\  \\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{ \: Height \: or \: Depth  \: = \: 2m  }}}

━━━━━━━━━━━━━━━━━━━━━━━━━

\begin{gathered}\begin{gathered} \therefore\: \sf{ Height \: or \: Depth \: of \: Reservoir \: = \underline {\underline{ 2m}}}\\\end{gathered}\end{gathered}

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions