Math, asked by mTinklepriya, 1 year ago

A rectangular water reservoir is 7.2 m by 2.5 m at the base . Water flows into it through a pipe whose cross section is 5cm × 9cm at the rate of 20 m per second . Find the height to which the water will rise in the reservoir in 40 minutes ?

Answers

Answered by santy2
26
The first step to the question is to find the volume of water that flows through the pipe within 1 second:

The cross sectional area of the pipe is 5cm by 9cm( This must dimensions of a rectangular pipe):

Volume is cross sectional area × height 

Therefore volume per second is: 

0.09 m × 0.05 m x 20 m = 0.09m²

0.09m² is the volume of water that enters through the pipe in 1 second.

Find volume that enters through the pipe in 40 minutes(2400 seconds)

that is,   0.09m² / s  × 2400s  =  216m³

216m³ is the volume of water that entered the tank after the ² 40 minutes.

Find the height of the tank that water of volume 216m² will reach.

volume = base x length x height
 216 m³ = 7.2 m × 2.5 m × h
216 m³ = 18m² × h

therefore h  = 216m³/18m²
               h  =  12 m

Therefore the water will reach a height of 12 meters.
Answered by vinodmehr
1

Step-by-step explanation:

upper bala ek dam sahi hai mujhe nhi usse vote do

Similar questions