Math, asked by shoyab1672001, 7 months ago


a) Reduce the differential equation to separable form
and then solve
(x + 2y)dx + (2x + y)dy = 0, y(0) = 1​

Answers

Answered by MaheswariS
3

\underline{\textsf{Given:}}

\mathsf{(x+2y)dx+(2x+y)dy=0,\;\;y(0)=1}

\underline{\textsf{To find:}}

\textsf{Solution of the given differential equation}

\underline{\textsf{Solution:}}

\mathsf{Consider,}

\mathsf{(x+2y)dx+(2x+y)dy=0}

\textsf{This can be written as}

\mathsf{x\,dx+2\,ydx+2\,xdy+y\,dy=0}

\mathsf{x\,dx+y\,dy=-2(x\,dy+y\,dx)}

\mathsf{x\,dx+y\,dy=-2\,d(xy)}

\mathsf{Integrating,}

\mathsf{\displaystyle\int\,x\,dx+\int\,y\,dy=-2\int\,d(xy)}

\mathsf{\dfrac{x^2}{2}+\dfrac{y^2}{2}=-2\,xy+C}

\mathsf{But\;y(0)=1}

\implies\mathsf{0+\dfrac{1}{2}=0+C}

\implies\mathsf{C=\dfrac{1}{2}}

\therefore\textsf{The solution is}

\mathsf{\dfrac{x^2}{2}+\dfrac{y^2}{2}=-2\,xy+\dfrac{1}{2}}

\mathsf{x^2+y^2=-4\,xy+1}

\boxed{\mathsf{x^2+y^2+4\,xy-1=0}}

\underline{\textsf{Find more:}}

Solve x(x-y)dy+y^2dx=0​

https://brainly.in/question/13164355

Solve dy/dx=e^3x-2y+ x^2 e^-2y

https://brainly.in/question/5999273

Similar questions