Physics, asked by ishapaul8838, 11 months ago

A resistance thermometer reads R = 20.0 Ω, 27.5 Ω, and 50.0 Ω at the ice point (0°C), the steam point (100°C) and the zinc point (420°C), respectively. Assuming that the resistance varies with temperature as Rθ = R0 (1 + αθ + βθ2), find the values of R0, α and β. Here θ represents the temperature on the Celsius scale.

Answers

Answered by bhuvna789456
2

\alpha=3.8 \times 10^{-3}^{\circ} \mathrm{C}^{-2}, \beta=-5.6 \times 10^{-7}^{\circ} \mathrm{C}^{-2}, \mathrm{R}_{0}=20 \Omega.

Explanation:

resistance at 0°C is , \mathrm{R}_{0}=20 \Omega

resistance at 100°C is, R_{100}=27.5 \Omega

resistance at 420°C is , R_{420}=50.0 \Omega

Given equation is    

R_{\theta}=R_{0}\left(1+\alpha \theta+\beta \theta^{2}\right)

Take R_{0} inside the bracket        

R_{\theta}=R_{0}+R_{0} \alpha \theta+R_{0} \beta \theta^{2}

Case 2:

When \theta=100^{\circ} \mathrm{C}

R_{100}-R_{0}=R_{0} \alpha 100+R_{0} \beta(100)^{2}

\frac{R_{100}-R_{0}}{R_{0}}=\alpha 100+\beta 10000 ………………(1)

\frac{27.5-20}{20}=\alpha 100+\beta 10000

800 \alpha+80000 \beta=3   ………………..(2)

Case 2:

When \theta=420^{\circ} \mathrm{C}

From equation (1)

\frac{R_{420}-R_{0}}{R_{0}}=\alpha 420+\beta 176400  

840 \alpha+352800 \beta=3    ……………….(3)

By solving equations (2) and (3)

\alpha=-6820 \beta

=>  \beta=-5.6 \times 10^{-7}^{\circ} \mathrm{C}^{-2}

=>  \alpha=3.8 \times 10^{-3}^{\circ} \mathrm{C}^{-2}

Answered by Anonymous
0

\huge{\boxed{\mathcal\pink{\fcolorbox{red}{yellow}{Answer}}}}

Attachments:
Similar questions