Math, asked by duragpalsingh, 4 months ago

A revision question for jee advanced.

Evaluate the given integral.

\displaystyle\int_{\sqrt{ln2}}^\sqrt{ln3}} \dfrac{xsin(x^2)}{sin(x^2)+sin(ln6-x^2)} dx

Answers

Answered by amansharma264
13

EXPLANATION.

\sf \implies \displaystyle\int^{ \sqrt{ln3} } _{ \sqrt{ln2} } \dfrac{xsin(x^{2}) }{sin(x^{2} ) + sin(ln6 - x^{2} )} dx.

As we know that,

By using substitution method, we get.

⇒ x² = t.

Differentiate w.r.t x, we get.

⇒ 2x dx = dt.

⇒ (x)dx = dt/2.

As we know that,

In definite integration if we apply substitution method then limit will also change, we get.

Put the lower limit

⇒ √㏑2.

⇒ (√㏑2)² = t.

⇒ ㏑2 = t. = new lower limit.

⇒ √㏑3 = t.

⇒ (√㏑3)² = t.

⇒ ㏑3 = t = upper limit.

\sf \implies\displaystyle\int^{{ln3} } _{ {ln2} } \dfrac{sin(t)}{sint + sin(ln6 - t)}\dfrac{dt}{2}

\sf I \implies \dfrac{1}{2} \displaystyle\int^{{ln3} } _{ {ln2} } \dfrac{sin(t)}{sint + sin(ln6 - t)} dt \implies (1)

As we know that

Formula of :

\sf \int\limits^b_a {f(x)} \, dx = \int\limits^b_a {f(a + b - x)} \, dx

Replace x = a + b - x.

Proof :

\sf \implies \int\limits^b_a {f(x)} \, dx

⇒ x = a + b - t.

⇒ dx = - dt.

\sf \implies \int\limits^a_b {f(a + b - t)} \, -dt

a = a + b - t.

t = b.

\sf \implies \int\limits^b_a {f(a + b - t)dt} \,

\sf \implies \int\limits^b_a {f(a + b - x)} \, dx

HENCE PROVED.

Replace,

⇒ t = ㏑3 + ㏑2 - 1.

⇒ t = ㏑6 - 1.

\sf I\implies\dfrac{1}{2} \displaystyle\int^{{ln3} } _{ {ln2} } \dfrac{sin(ln6 - t)}{sin(ln6 - t) + sint} dt    \implies (2)

Adding equation (1) & (2), we get.

\sf 2I\implies\dfrac{1}{2} \displaystyle\int^{{ln3} } _{ {ln2} } \dfrac{sint + sin(ln6 - t)}{sint + sin(ln6 - t)} dt.

\sf 2I\implies\dfrac{1}{2} \displaystyle\int^{{ln3} } _{ {ln2} } dt

\sf 2I\implies\dfrac{1}{2} \bigg[ln3 - ln2\bigg]

\sf \implies I = \dfrac{1}{4} ln\dfrac{3}{2}

                                                                                                                   

MORE INFORMATION.

Properties of definite integrals.

\sf (1) = \int\limits^b_a {f(x)} \, dx = \int\limits^b_a {f(t)} \, dt

\sf (2) = \int\limits^b_a {f(x)} \, dx = -\int\limits^a_b {f(x)} \, dx

\sf (3) = \int\limits^b_a {f(x)} \, dx = \int\limits^c_a {f(x)} \, dx + \int\limits^b_c {f(x)} \, dx \ where\ \ a <c<b

\sf (4) = \int\limits^a_0 {f(x)} \, dx =\int\limits^a_0 {f(a - x)} \, dx

\sf (5) = \int\limits^b_a {f(x)} \, dx = \int\limits^b_a{f(a + b - x)} \, dx

Answered by mathdude500
10

\large\underline\purple{\bold{Solution :-  }}

\tt\implies \displaystyle\int^{ \sqrt{ln3} } _{ \sqrt{ln2} } \dfrac{xsin(x^{2}) }{sin(x^{2} ) + sin(ln6 - x^{2} )} dx

 \tt \: Let  \: I  \:  = \displaystyle\int^{ \sqrt{ln3} } _{ \sqrt{ln2} } \dfrac{xsin(x^{2}) }{sin(x^{2} ) + sin(ln6 - x^{2} )} dx

\:\boxed{\red{\bf\:Put \:  {x}^{2}  = t }}

\rm :\implies\:2xdx = dt

\rm :\implies\:x \: dx \:  = \dfrac{dt}{2}

Now,

  • Limits become

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf t =  {x}^{2}  \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf  \sqrt{ln2}  & \sf ln2 \\ \\ \sf  \sqrt{ln3}  & \sf ln3 \end{array}} \\ \end{gathered}

So,

  • Given integral can be rewritten as

 \tt \: I  =  \dfrac{1}{2}\displaystyle\int^{{ln3} } _{ {ln2} } (\dfrac{sin(t)}{sint + sin(ln6 - t)})dt -  -  - (1)

We know that,

 \boxed{ \pink{\int\limits^b_a {f(x)} \, dx = \int\limits^b_a{f(a + b - x)}}}

So,

  • using this property for above integral,

\rm :\implies\:Change \: t \to \: ln3 + ln2 - t = ln6 - t

So,

  • equation (1) can be rewritten as

 \tt \: I  =  \dfrac{1}{2}\displaystyle\int^{{ln3} } _{ {ln2} }( \dfrac{sin(ln6 - t)}{sint + sin(ln6 - t)} )dt -  -  - (2)

Now,

  • Adding equation (1) and equation (2), we get

 \tt \: 2I  =  \dfrac{1}{2}\displaystyle\int^{{ln3} } _{ {ln2} } \dfrac{sin(t) + sin(ln - 6)}{sint + sin(ln6 - t)}dt

 \tt \: 2I  =  \dfrac{1}{2}\displaystyle\int^{{ln3} } _{ {ln2} }dt

\rm :\implies\:\ 2I\implies\dfrac{1}{2} \bigg[ln3 - ln2\bigg]

 \boxed{\bf \:\large\red{I=\dfrac{1}{4}  ln(\dfrac{3}{2})}}

  \large \underline{\tt \:  \blue{ Explore  \: more - }}

The properties of definite integral are as follow -

\bf (1). \:  \boxed{ \blue{ \int\limits^b_a {f(x)} \, dx = \int\limits^b_a {f(t)}}}

\bf (2). \:  \boxed{ \green{\int\limits^b_a {f(x)} \, dx = -\int\limits^a_b {f(x)} }}

\bf (3). \:  \boxed{ \blue{ \int\limits^b_a {f(x)} \, dx =  - \int\limits^a_b {f(x)}}}

\bf (4). \:  \boxed{ \purple{\int\limits^b_a {f(x)} \, dx = \int\limits^c_a {f(x)} \, dx + \int\limits^b_c {f(x)} \, dx \ where\ \ a < c < b}}

\bf (5). \:  \boxed{ \pink{ \int\limits^a_0 {f(x)} \, dx =\int\limits^a_0 {f(a - x)}}}

\bf (6). \:  \boxed{ \red{ \int\limits^b_a {f(x)} \, dx = \int\limits^b_a{f(a + b - x)}}}

Similar questions