Math, asked by markbro111992, 4 days ago

A REVISIT In ALMN, a line AB is such that AB || MN and AB line bisect the area of a triangle in two equal parts. Then, find LA: MA? ​

Answers

Answered by senrabindranath40
1

Answer:

Correct option is

D

15:1

In △LPQ and △LMN

∠L ≅∠L  [Common angle]

∠LPQ ≅∠LMN  [Corresponding angles]

∴ △LPQ ≅ △LMN  [By AA test of similarity]

ar(LMN)ar(LPQ) = LM2LP2  [Areas of similar triangles]

 ∴ar(LMN)ar(LPQ) = 8222

∴ ar(LMN)ar(LPQ) = 644

∴ ar(LMN)ar(LPQ) = 161

∴ ar(LPQ)ar(LMN) = 116  [By Invertendo]

 ∴ar(LPQ)ar(LMN)−ar(LPQ)= 116−1

Similar questions