Math, asked by jeyalakshmiraja2210, 2 months ago

a Rhombus, length of the one diagonal is 6 cm, another diagonal is thrice the other.
its area is
14 cm
28 cm
22 cm
54cm​

Answers

Answered by SachinGupta01
4

\bf \underline{ \underline{\maltese\:Given} }

 \sf  In \:  a  \: rhombus,

 \sf  \Rrightarrow Length  \: of  \: one \:  diagonal = 6 \:  cm.

 \sf  \Rrightarrow Another \:  diagonal \:  length \:  is \:  thrice \:  of \:  other.

\bf \underline{ \underline{\maltese\:To  \: find } }

 \sf \implies Area  \: of  \: rhombus =  \: ?

\bf \underline{ \underline{\maltese\:Solution  } }

 \underline{ \boxed{ \sf {Area\:of\:Rhombus} = \dfrac{1}{2}  \times (d_1 \times d_2)}}

 \sf  In  \: the  \: formula,

 \sf \implies d_1  = Length \:  of \:  first  \: diagonal

 \sf \implies d_2 = Length \:  of \:  second  \: diagonal

 \bf \underline{Now},

 \sf \implies   Length \:  of \:  first  \: diagonal \: (d_1) = \bf 6 \: cm

 \sf \implies   Length \:  of \:  second  \: diagonal \: (d_2) =  \bf 3 \times 6 = 18 \: cm

 \sf Substitute \:  the \:  values,

\sf \implies {Area\:of\:Rhombus} = \dfrac{1}{ \cancel{2}}  \times ( \cancel{6 }\times 18)

\sf \implies {Area\:of\:Rhombus} = 3 \times 18

\sf \implies{Area\:of\:Rhombus}=54 \: cm^{2}

━━━━━━━━━━━━━━━━━━━━━━━━

 \bf More\: formulas\:based \: on \: area :

\bf{1.} \: \sf Area  \: of \:  triangle =  \dfrac{1}{2}  \times   (Base \times  height )

\bf{2.} \:  \sf Area \:  of  \: square = (Side)^2

 \bf{3.} \:  \sf Area \:  of \:  rectangle = Length  \times Breadth

 \bf{4.} \:  \sf Area \:  of \:  trapezium =  \dfrac{1}{2}  \times (Sum  \: of  \: two \:  bases ) \times height

Similar questions
Math, 2 months ago