Math, asked by Anonymous, 6 days ago

A rhombus shaped field has green grass for 18 cows to graze . If each side of the rhombus is 30m and it's longer diagonal is 48m , how much area of grass field will each cow be getting?


Answers

Answered by ItzzTwinklingStar
63

Given:

  • Each side of Rhombus is 30m.
  • Diagonal of Rhombus is 48m.

To Find:

  • Area of grass field each cow will get.

Formula used:

\\\bigstar \: {\underline{\boxed{\bf{\red{s=\dfrac{a+b+c}{2}}}}}}\\\\

where,

  • a = 30m
  • b = 30m
  • c = 48m

\\\bigstar \: {\underline{\boxed{\bf{\red {area=\sqrt{s(s-a)\:(s-b)\:(s-c)}}}}}}\\\\

Solution:

we know that,

\\\dashrightarrow\sf \:  \: {s=\dfrac{a+b+c}{2}}\\

★ Substituting values from the above formula :

\\\dashrightarrow\sf{s=\dfrac {30+30+48}{2}} \\\\

\dashrightarrow\sf \:  \: {\cancel\dfrac{108}{2}}\\\\

\dashrightarrow\bold \red { \:  \: 54m}\\\\

Now ,

again we know that,

 \\\sf\dashrightarrow{Area= \sqrt{s(s-a)\:(s-b)\:(s-c)}}\\

★ Substituting values from the above formula :

 \\\sf\dashrightarrow{\sqrt{54 (54-30)\:(54-30)\:(54-48)}}\\\\

\dashrightarrow\sf{\sqrt{54\times{24}\times{24}\times{6}}}\\\\

 \sf\dashrightarrow{\sqrt{2 \times{3}\times{3}\times{3}\times{2}\times{2}\times{2}\times{3}\times{2}\times{2}\times{3}\times{2}\times{3}\times{2}\times{3}}}\\\\

\dashrightarrow\bold \blue {432{m}^{2}}\\\\

Area of Rhombus ABCD :

  • \dashrightarrow\sf{ \:  \: 2\times{432}}\\\\
  • \dashrightarrow\bold \green{ \: 864 \: {m}^{2}}\\\\

Area of Field each cow will get :

  • \\\dashrightarrow\sf{ \:  \: \cancel\dfrac{864}{18}}\\\\
  • \dashrightarrow\sf\bold \pink {48 \: {m}^{2}}\\\\

So , Each cow will get 48m²

Answered by MathTeacher029
2

the answer is : Each cow will get 48m²

Similar questions