Physics, asked by shivamprajapati1, 1 year ago

a rifle of mass 4 kg A bullet of mass 50 kg is fired with an initial velocity of 35 metre per second calculate the initial recoil of the rifle ​

Answers

Answered by IamIronMan0
1

Answer:

For recoil use Linear momentum conservation

( I think mass of bullet is 50 gm not kg )

Let v be the velocity of gun

v =  \frac{50 \times 35}{1000 \times 4}  =  \frac{7}{16} ms {}^{ - 1}

Change in momentum = 50×7/16 =21.875 kgm/s

Answered by Anonymous
0

 \underline{ \underline{ \bf{Answer}}} :  -  \\ \implies \:  \bf{recoil \: velocity \:  = 0.44 \:  \frac{m}{s} } \\   \\   \underline{\underline{\bf {Step - by - step \: explanation}}} :  -  \\  \\  \underline{\bf{ To \: find}}   -  \\  \\  \bf{find \: recoil \: velocity \: of \: rifle} \\  \\   \underline{\bf{Solution}} :  -  \\  \\  \bf{velocity \: of \:  \: bullet \:( v1) = 35 \:  \frac{m}{s} } \\  \\ \bf{ mass \: of \: bullet \: (m1) = 50 \: g = 0.050 \: kg} \\  \\  \bf{mass \: of \: rifle \: (m2) = 4 \: kg } \\  \\  \bf{recoil \: velocity \: of \: rifle \: (v2) =? }

Since,No external force acts on the rifle then the change in momentum is zero.

Momentum of rifle = (momentum of bullet)

 \implies \:  \bf{m2 \: v2 = m1 \: v1} \\  \\  \implies \:  \bf{4 \times v2 = 0.050 \times 35} \\  \\  \implies \:  \bf{v2 = 0.44 \:  \frac{m}{s} } \\  \\  \bf{recoil \: velocity \: of \: rifle \: is \: 0.44 \:  \frac{m}{s} }

Similar questions