a right angle triangle is isosceles. if the square of the hypotenuse is 50m square, what is the length of each sides?
Answers
angle B = 90
AB = BC
take AB = x
Pythagoras Thm.
AB^2+BC^2= AC^2
2x^2 = 50
x^2= 25
therefore x = 5
AB=BC=5
Correct Question:-
A right angle triangle is isosceles. If the square of the hypotenuse is 50m², What is the length of equal sides?
Answer:-
\red{\bigstar}★ Length of equal sides \large\leadsto\boxed{\tt\purple{5 \: m}}⇝
5m
• Given:-
Length of Hypotenuse of right angle triangle = 50 m
⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
• To Find:-
Length of equal sides of the right angle triangle.
⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
• Solution:-
Let the equal sides of the right angle triangle be 'a'.
★ Figure:-
\setlength{\unitlength}{1cm}\begin{picture}(6,5)\linethickness{.4mm}\put(1,1){\line(1,0){4.5}}\put(1,1){\line(0,1){3.5}}\qbezier(1,4.5)(1,4.5)(5.5,1)\put(.3,2.5){\large\bf a}\put(2.8,.3){\large\bf a}\put(4.2,2.5){\large\bf 50}\put(1.02,1.02){\framebox(0.3,0.3)}\put(.7,4.8){\large\bf A}\put(.8,.3){\large\bf B}\put(5.8,.3){\large\bf C}\end{picture}
We know,
⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
• According to the Pythagoras theorem:-
\pink{\bigstar}★ \underline{\boxed{\bf\blue{(Hypotenuse)^2 = (Perpendicular)^2 + (Base)^2}}}
(Hypotenuse)
2
=(Perpendicular)
2
+(Base)
2
⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
➪ \sf 50 = (a)^2 + (a)^250=(a)
2
+(a)
2
⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
➪ \sf 50 = a^2 + a^250=a
2
+a
2
⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
➪ \sf 50 = 2 a^250=2a
2
⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
➪ \sf a^2 = \dfrac{50}{2}a
2
=
2
50
⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
➪ \sf a^2 = 25a
2
=25
⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
➪ \sf a = \sqrt{25}a=
25
⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
★ \large{\bf\green{5 \: m}}5m
⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Therefore, the length of the equal sides of the right angle triangle are 5 m.