Math, asked by jattidaneshwari39, 4 months ago

a right angled triangle has the largest aide as 13 cm and one of the sides containing the right angle 12 cm its area in cm sq is​

Answers

Answered by Ladylaurel
0

Answer ::

The area of triangle is 30cm².

Step-by-step explanation ::

To Find :-

  • The area of triangle

Solution :-

Given that,

  • A right-angled triangle has the largest side as 13cm and one of the sides containing the right angle 12cm

Figure :-

  • Refer the attachment.

Assumption :-

Let us assume the right-angled triangle as ABC,

ACCORDING THE QUESTION,

To get the area, first we need to find out the measure of AB [ the base side of ∆ ],

By applying Pythagoras theorem to ABC,

AB² + BC² = AC²,

AB² + 12² = 13²

AB² = 13² - 12²

AB² = 169 - 144

AB² = 25

AB = √25

AB = 5

The base side of ABC is 5cm.

Now, the area of triangle is,

As we know that,

Area of = 1/2 × base × height,

Area = 1/2 × 5 × 12

Area = 1 × 5 × 6

Area = 5 × 6

Area = 30

The area of is 30cm².

Attachments:
Answered by iTzShInNy
25

\bigstar \underline{ \sf Diagram} \bigstar

 \\

  •  \small \sf \:In  \: the \: Attachment\:  \\

 \\

 \bigstar \underline{ \sf Given} \bigstar

 \\

  •  \small \sf Hypotenuse  \: of \: the \: right  \: angled \: traingle : \longrightarrow  \boxed{ \sf 13 \:  cm} \\
  • \small \sf Perpendicular \: of \: the \: right  \: angled \: traingle  : \longrightarrow  \boxed{ \sf 12 \:  cm} \\

 \\

\bigstar \underline{ \sf To \: Find} \bigstar

 \\

  • \small \sf Base \: of \: the \: right  \: angled \: traingle : \longrightarrow  \boxed{ \sf?} \\
  • \small \sf Area \: \: of \: the \: right  \: angled \: traingle   : \longrightarrow  \boxed{ \sf ?} \\

 \\

\bigstar \underline{ \sf Formula \: Used} \bigstar

 \\

  •  \small\bigstar {\underline {\boxed { \bf Hypotenuse {}^{2}  \:=  \: Base {}^{2}  \: + \: Perpendicular {}^{2}   }}} \bigstar \\
  • \small\bigstar {\underline {\boxed { \bf Area  \: of  \:  traingle\:=  \:  \frac{1}{2}   \times base \times height\: }}} \bigstar \\

 \\

\bigstar \underline{ \sf Solution} \bigstar

 \\

 \small \sf We  \: know, \\

 \small\bigstar {\underline {\boxed { \bf Hypotenuse {}^{2}  \:=  \: Base {}^{2}  \: + \: Perpendicular {}^{2}   }}} \bigstar \\

 \small  \sf   :  \implies \: AC {}^{2} =AB {}^{2}  + BC {}^{2}  \\

 \small  \sf   :  \implies \: (13) {}^{2} =AB {}^{2}  + (12) {}^{2}  \\

 \small  \sf   :  \implies \: 169 =AB {}^{2}  + 144 \\

 \small  \sf   :  \implies \: AB {}^{2} + 144 = 169 \\

 \small  \sf   :  \implies \: AB {}^{2} =169 - 144 \\

 \small  \sf   :  \implies \: AB {}^{2} =25 \\

 \small  \sf   :  \implies \: AB = \sqrt{25}  \\

 \small  \sf   :  \implies \: AB = 5 \\

 \small \sf \:  \therefore \: Hence, the \: base \: of \: the \: right \: angled \: traingle \: is  \: \underline{ 5 \: cm} \\

 \\

 \small \sf We \: also \:  know,

 \\

\small\bigstar {\underline {\boxed { \bf Area  \: of  \:  traingle\:=  \:  \frac{1}{2}   \times base \times height\: }}} \bigstar \\

 \small  \sf  :  \implies  Area \: of\: the   \: traingle =  \frac{1}{ \cancel2}  \times 5 \times \cancel{ 12} \:  \\

 \small  \sf  :  \implies  Area \: of\: the   \: traingle =  5 \times 6\:  \\

 \small  \sf  :  \implies  Area \: of\: the   \: traingle =  30 \:  {cm}^{2} \:  \\

 \\

 \small \sf \therefore \: Hence,we \: got \: the \: area \: of \: the \: right \: angled \: traingle \: as \:  \underline{30 \: cm  {}^{2}  }

 \\  \\

  \bigstar{ \underline{ \underline  \pink{  \sf★@iTzShInNy☆}}} \bigstar

Attachments:
Similar questions