Math, asked by sangeetamahilang4331, 4 months ago

A right - angled triangle is isosceles. if the of the hypotenuse is 50m, what is the length of equal sides ?​

Answers

Answered by Bᴇʏᴏɴᴅᴇʀ
120

Correct Question:-

A right angle triangle is isosceles. If the square of the hypotenuse is 50m², What is the length of equal sides?

Answer:-

\red{\bigstar} Length of equal sides \large\leadsto\boxed{\tt\purple{5 \: m}}

Given:-

  • Length of Hypotenuse of right angle triangle = 50 m

⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

To Find:-

  • Length of equal sides of the right angle triangle.

⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Solution:-

Let the equal sides of the right angle triangle be 'a'.

Figure:-

\setlength{\unitlength}{1cm}\begin{picture}(6,5)\linethickness{.4mm}\put(1,1){\line(1,0){4.5}}\put(1,1){\line(0,1){3.5}}\qbezier(1,4.5)(1,4.5)(5.5,1)\put(.3,2.5){\large\bf a}\put(2.8,.3){\large\bf a}\put(4.2,2.5){\large\bf 50}\put(1.02,1.02){\framebox(0.3,0.3)}\put(.7,4.8){\large\bf A}\put(.8,.3){\large\bf B}\put(5.8,.3){\large\bf C}\end{picture}

We know,

⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

According to the Pythagoras theorem:-

\pink{\bigstar} \underline{\boxed{\bf\blue{(Hypotenuse)^2 = (Perpendicular)^2 + (Base)^2}}}

⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf 50 = (a)^2 + (a)^2

⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf 50 = a^2 + a^2

⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf 50 = 2 a^2

⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf a^2 = \dfrac{50}{2}

⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf a^2 = 25

⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf a = \sqrt{25}

⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\large{\bf\green{5 \: m}}

⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Therefore, the length of the equal sides of the right angle triangle are 5 m.


BrainlyIAS: Nice ❤ :)
Glorious31: Great :D
Answered by Anonymous
171

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Given:-

  • Length of the hypotenuse right αngled isosceles triαngle = \sf{50^2\:cm}

To Find:-

  • The length of the equαl sides.

Solution:-

Let the equαl side be x.

According to the Pythαgorαs theorem :-

\large\boxed{\underline{\green{\sf (Hypotenuse ^2)  =(perpendicular)^2+(Base)^2}}}

Now,

:\implies\:\: \sf{50^2=x^2+x^2}

:\implies\:\: \sf{50^2=2x^2}

:\implies\:\: \sf{x^2=\dfrac{50}{2} }

:\implies\:\: \sf{x^2=25 }

:\implies\:\: \sf{x=\sqrt{25} }

\sf:\implies \underline{\boxed{\pink{\mathfrak{x = 5\: m}}}}\bigstar

∴ Length of the equαl sides of the right αngle triαngle αre 5 m.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Attachments:

BrainlyIAS: Nice ❤ :-)
Similar questions