Math, asked by sweetugirl38, 3 months ago

A right circular cone is inscribed in a sphere of radius r. Find the dimensions of the cone if its volume is to be a maximum. ​

Answers

Answered by ritvijakatare1
0

Answer:

h=2r

r=r

volumeof cone 1/3×pi×r^2×h

1/3×22/7×r^2×2r

Answered by mathdude500
4

Basic Concept Used :-

HOW TO FIND MAXIMUM AND MINIMUM VALUE OF A FUNCTION

  • Differentiate the given function f(x)

  • Put f'(x) = 0 and find critical points.

  • Find the second derivative, i.e. f''(x).

  • Apply the critical points in the second derivative.

  • The function f (x) is maximum when f''(x) < 0.

  • The function f (x) is minimum when f''(x) > 0.

\large\underline{\sf{Solution-}}

Let us suppose that

  • Radius of cone be 'y' units

and

  • height of cone be 'h' units.

So,

Dimensions of cone,

  • AB = height of cone = h units

and

  • BC = radius of cone = 'y' units.

Now,

Given that,

  • A cone is inscribed in a sphere of radius 'r' units.

Let

  • AB be the axis of cone and O be the centre of sphere.

  • OB = x units

So,

  • Height of cone, AB = AO + OB = r + x

Now, In right-angle BOC, we have,

\rm :\longmapsto\: {x}^{2}  +  {y}^{2}  =  {r}^{2}

\bf\implies \: {y}^{2}  =  {r}^{2}  -  {x}^{2}

Now, we know

Volume of cone is

\rm :\longmapsto\:V = \dfrac{1}{3}\pi \:  {y}^{2}h

On substituting the values of y and h, we get

\rm :\longmapsto\:V = \dfrac{1}{3}\pi \:  ({r}^{2} -  {x}^{2} )(r + x)

\rm :\longmapsto\:V = \dfrac{1}{3}\pi \:  ({r} -  {x})(r + x)(r + x)

\rm :\longmapsto\:V = \dfrac{1}{3}\pi \: (r - x) {(r + x)}^{2}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} V =\dfrac{d}{dx}  \dfrac{1}{3}\pi \: (r - x) {(r + x)}^{2}

\rm :\longmapsto\:\dfrac{d}{dx} V =\dfrac{1}{3}\pi \:\dfrac{d}{dx}(r - x) {(r + x)}^{2}

\rm :\longmapsto\:\dfrac{d}{dx} V =\dfrac{1}{3}\pi \:((r - x)\dfrac{d}{dx}(\: {(r + x)}^{2}  +  {(r + x)}^{2}\dfrac{d}{dx} (r - x))

\rm :\longmapsto\:\dfrac{dV}{dx} = \dfrac{1}{3}\pi \:\bigg((r - x)2(r + x) +  {(r + x)}^{2}( - 1) \bigg)

\rm :\longmapsto\:\dfrac{d}{dx} V =\dfrac{1}{3}\pi \:(r + x)(2r - 2x - r - x)

\rm :\longmapsto\:\dfrac{d}{dx} V =\dfrac{1}{3}\pi \:(r + x)(r - 3x) -  - (1)

For maximum or minimum value,

\rm :\longmapsto\:\dfrac{d}{dx} V =0

\rm :\longmapsto\: \dfrac{1}{3}\pi \:(r + x)(r - 3x)  = 0

\bf\implies \:x = \dfrac{r}{3}  -  -  - (2)

Now, on differentiating equation (1) w. r. t. x, we get

\rm :\longmapsto\:\dfrac{ {d}^{2} V}{ {dx}^{2} } = \dfrac{1}{3}\pi \:\bigg(( r + x)\dfrac{d}{dx} (r - 3x) + (r - 3x)\dfrac{d}{dx} (r + x)\bigg)

\rm :\longmapsto\:\dfrac{ {d}^{2} V}{ {dx}^{2} } = \dfrac{1}{3}\pi \: ((r + x)( - 3) + (r - 3x))

\rm :\longmapsto\:\dfrac{ {d}^{2} V}{ {dx}^{2} } = \dfrac{1}{3}\pi \: ( - 3r - 3x \: + r - 3x)

\rm :\longmapsto\:\dfrac{ {d}^{2} V}{ {dx}^{2} } = \dfrac{1}{3}\pi \: ( - 2r - 6x )

\rm :\longmapsto\:\dfrac{ {d}^{2} V}{ {dx}^{2} } =  - \dfrac{1}{3}\pi \: (2r + 6x )

\rm :\implies\:\dfrac{ {d}^{2} V}{ {dx}^{2} } &lt; 0

\bf\implies \:Volume \: of \: cone \: is \: maximum.

As

\rm :\longmapsto\: {y}^{2}  =  {r}^{2}  -  {x}^{2}

\rm :\longmapsto\: {y}^{2}  =  {r}^{2}  -  {\bigg( \dfrac{r}{3} \bigg) }^{2}

\rm :\longmapsto\: {y}^{2}  =  {r}^{2}  -  \dfrac{ {r}^{2} }{9}

\rm :\longmapsto\: {y}^{2}  =  \dfrac{9{r}^{2}  -  {r}^{2} }{9}

\rm :\longmapsto\: {y}^{2}  =  \dfrac{8{r}^{2}}{9}

\bf\implies \:y = \dfrac{2 \sqrt{2} }{3} r

Now,

Height of cone,

\rm :\longmapsto\:h = r + x

\rm :\longmapsto\:h = r + \dfrac{r}{3}

\rm :\longmapsto\:h = \dfrac{3r + r}{3}

\bf:\implies\:h = \dfrac{4}{3}r

Hence,

\begin{gathered}\begin{gathered}\bf\: Dimensions_{(cone)}-\begin{cases} &amp;\sf{radius = \dfrac{2 \sqrt{2} }{3}r} \\ &amp;\sf{height = \dfrac{4}{3} r} \end{cases}\end{gathered}\end{gathered}

Attachments:
Similar questions