Math, asked by SHIVAMDHASMANA, 1 month ago

A right circular cylinder with base radius 14 cm, height 35 cm​,
Find the volume, CSA, TSA of right circular cylinder.

Bye... ​

Answers

Answered by pushkardigraskar2005
2

Answer:

Here's your answer

Step-by-step explanation:

For A Right Circular Cylinder :

Given =>

  •    Base Radius , r = 14 cm
  •    Height , h = 35 cm

To find =>

  • CSA of cylinder
  • TSA of cylinder
  • Volume of cylinder

Formulas for each =>

  • CSA of cylinder = 2πrh
  • TSA of cylinder = 2πr(r + h)
  • Volume of cylinder = πr²h

Where ,

   r = Base Radius of Cylinder

   h = height of Cylinder

   π = 22/7

We Have ,

   r = 14 cm

   h = 35 cm

✏ Calculating CSA of Cylinder :

Using Formula of CSA

CSA = 2πrh

= 2 * 22/7 * 14 * 35

= 44 * 70

CSA = 3080cm²

✏ Calculating TSA of Cylinder :

Using Formula of TSA

TSA = 2πr(r + h)

= 2 * 22/7 * 14 (14 + 35)

2 * 227 * 14 * 49

TSA = 4312cm²

✏Calculating Volume of Cylinder :

Using Formula of Volume

Vol = πr²h

= 22/7 * 14 * 14 * 14 * 35

Vol = 21560cm³

Hence

  • CSA of cylinder = 3080cm²
  • TSA of cylinder = 4312cm²
  • Volume of cylinder = 21560cm³

Hope you understand.

Answered by SparklingThunder
43

\huge\purple{ \underline{ \boxed{\mathbb{\red{QUESTION : }}}}}

Find the volume , CSA ( Curved Surface Area ) , TSA ( Total Surface Area ) of right circular cylinder with base radius 14 cm , height 35 cm.

\huge\purple{ \underline{ \boxed{\mathbb{\red{ANSWER : }}}}}

  • Volume of cylinder = \sf21560\:{cm}^{3}

  • CSA of cylinder = \sf3080\:{cm}^{2}

  • TSA of cylinder = \sf4312\:{cm}^{2}

\huge\purple{ \underline{ \boxed{\mathbb{\red{EXPLANATION : }}}}}

\green{ \large \underline{ \mathbb{\underline{GIVEN : }}}}

  • Radius of right circular cylinder ( r )= 14 cm

  • Height of right circular cylinder ( h )= 35 cm

 \green{ \large \underline{ \mathbb{\underline{TO  \: FIND : }}}}

  • Volume of right circular cylinder

  • CSA of right circular cylinder

  • TSA of right circular cylinder

 \green{ \large \underline{ \mathbb{\underline{FORMULAS \:  USED: }}}}

 \purple{ \boxed{ \begin{array}{l} \textsf{Volume of cylinder = $ \sf\pi {r}^{2}h $}  \\  \\  \textsf{CSA of cylinder = $\sf2\pi rh $ } \\  \\ \textsf{TSA of cylinder = $\sf2\pi r(h + r) $} \end{array}}}

\green{ \large \underline{ \mathbb{\underline{SOLUTION: }}}}

  \red{ \underline{\underline{\textsf{Volume of cylinder : }}}}

 \displaystyle \longrightarrow \textsf{Volume of cylinder  } \sf = \frac{22}{ \cancel7}   \times  {(14)}^{2}  \times  \cancel{35} { \:  \:  }^{5}  \:  \\  \\ \displaystyle \longrightarrow \textsf{Volume of cylinder  } \sf =22 \times 196 \times 5 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \displaystyle \longrightarrow \textsf{Volume of cylinder  } \sf =21560 \:   {cm}^{3}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:

  \red{ \underline{\underline{\textsf{CSA of cylinder : }}}}

 \displaystyle \longrightarrow \textsf{CSA of cylinder  } \sf = 2 \times  \frac{22}{ \cancel7} \times 14 \times  \cancel{35} { \:  \: }^{5}    \:  \:  \: \:  \\  \\ \displaystyle \longrightarrow \textsf{CSA of cylinder  } \sf = 2 \times 22 \times 14 \times 5\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \displaystyle \longrightarrow \textsf{CSA of cylinder  } \sf =3080 \:   {cm}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:

  \red{ \underline{\underline{\textsf{TSA of cylinder : }}}}

 \displaystyle \longrightarrow \textsf{TSA of cylinder  } \sf = 2 \times  \frac{22}{ \cancel7} \times  \cancel{14} { \:  \: }^{2}   \: (35 + 14)   \:  \:  \: \:  \\  \\ \displaystyle \longrightarrow \textsf{TSA of cylinder  } \sf = 2 \times 22 \times 2 \times 49\:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \displaystyle \longrightarrow \textsf{TSA of cylinder  } \sf =4312 \:   {cm}^{2}   \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:

 \purple{ \boxed{ \begin{array}{l} \textsf{Volume of cylinder = $ \sf21560 \:  {cm}^{3}  $}  \\  \\  \textsf{CSA of cylinder = $\sf3080 \:  {cm}^{2} $ } \\  \\ \textsf{TSA of cylinder = $\sf4312 \:  {cm}^{2}  $} \end{array}}}

Similar questions