Math, asked by keerthanask1903, 11 months ago

A right circular cylindrical container of base radius 6 cm and height 15 cm is full of ice
cream. The ice cream is to be filled in cones of height 9 cm and base radius 3cm, having a
hemispherical cap. Find the number of cones needed to empty the container.​

Answers

Answered by Anonymous
8

\huge{ \underline{ \red{ \bold{ \underline{ \bf{Solution }}}}}}

 \bf \red{Given} \purple{\begin{cases}\textsf{Radius\:of\:base=6cm}\\\textsf{height\:of\: cylinder=15cm}\\\textsf{height \:of \:cone=9cm}\\\textsf{Radius \:of\: base\: of\: cone=3cm } \end{cases}}

 \large\underline{ \underline{ \pink{ \bold {To \:Find}}}}

\bf\red{we\:need \:to\:find \:the\:number\:of\:cones\:}

\bf\:141.43{cm}^{3}\\\\

Thus the number of cones required

 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \bf \frac{1697.14 }{141.43} \\ \\

\huge\bf\:{\boxed{\pink{=12}}}

━━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
7

\bf\large{\underline{Question:-}}

A right circular cylindrical container of base radius 6 cm and height 15 cm is full of ice

cream. The ice cream is to be filled in cones of height 9 cm and base radius 3cm, having a

hemispherical cap. Find the number of cones needed to empty the container.

\bf\large{\underline{Solution:-}}

  • Voulme of ice-cream cone in container = πr²h

\sf Volume\: of\: ice-cream\: cone\:in\: container=

\sf \frac{22}{7}×6^2×15

\sf  3.14 × 36 × 15

\sf 1697.14cm^3

Now,

★ Volume of ice-cream = Volume of hemisphere + volume of cone

So,

\sf Volume\:of\:ice-cream = \frac{2}{3}πr^3 + \frac{1}{3}πr^2h

\sf Volume\:of\:ice-cream = \frac{2}{3}\frac{22}{7}×3^3 + \frac{1}{3}\frac{22}{7}×3^2×9

\sf Volume\:of\:ice-cream = 3^2×\frac{22}{7} [2+3]

\sf Volume\:of\:ice-cream = 9×\frac{22}{7}×5

\sf Volume\:of\:ice-cream = 141.43cm^3

\bf{\underline{Hence:-}}

  • → Number of cone required = Volume of ice-cream in container ÷ volume of ice-cream .

  • \sf → No.\:of\:cone = \large\frac{1697.14}{141.43}

  • \sf → No.\:of\: cones\: required= 12

_______________________

Similar questions