Math, asked by ggokulk237, 5 months ago

a right circular cylindrical container of base radius 6 cm and height 15 cm is full of ice cream. the ice cream to be filled in cones of height 9 cm and base radius 3 cm, having a hemispherical cap. find the number of cones needed to empty the container​

Answers

Answered by varadad25
64

Answer:

The number of cones needed to empty the container is 12.

Step-by-step-explanation:

We have given the dimensions of a cylindrical container and a cone with hemispherical cap.

For cylindrical container,

Radius ( R ) = 6 cm

Height ( H ) = 15 cm

For cone,

Radius ( r ) = 3 cm

Height ( h ) = 9 cm

Now, we know that,

\displaystyle{\sf\:No.\:of\:cones\:required\:=\:\dfrac{Volume\:of\:cylindrical\:container} {Volume\:of\:ice-cream\:cone}}

\displaystyle{\implies\sf\:No.\:of\:cones\:required\:=\:\dfrac{Volume\:of\:cylindrical\:container}{(\:Volume\:of\:cone\:+\:Volume\:of\:hemisphere\:)}}

\displaystyle{\implies\sf\:No.\:of\:cones\:required\:=\:\dfrac{\pi\:R^2\:H}{\left(\:\dfrac{1}{3}\:\pi\:r^2\:h\:\right)\:+\:\left(\:\dfrac{2}{3}\:\pi\:r^3\:\right)}}

\displaystyle{\implies\sf\:No.\:of\:cones\:required\:=\:\dfrac{\dfrac{22}{7}\:\times\:6\:\times\:6\:\times\:15}{\left(\:\dfrac{1}{3}\:\times\:\dfrac{22}{7}\:\times\:3\:\times\:3\:\times\:15\:\right)\:+\:\left(\:\dfrac{2}{3}\:\times\:\dfrac{22}{7}\:\times\:3\:\times\:3\:\times\:3\:\right)}}

\displaystyle{\implies\sf\:No.\:of\:cones\:required\:=\:\dfrac{\dfrac{22}{7}\:\times\:6\:\times\:6\:\times\:15}{\dfrac{22}{7}\:\times\:3\:\times\:3\:\left(\:\dfrac{1}{\cancel{3}}\:\times\:\cancel{9}\:+\:\dfrac{2}{\cancel{3}}\:\times\:\cancel{3}\:\right)}}

\displaystyle{\implies\sf\:No.\:of\:cones\:required\:=\:\dfrac{\cancel{\dfrac{22}{7}}\:\times\:6\:\times\:6\:\times\:15}{\cancel{\dfrac{22}{7}}\:\times\:3\:\times\:3\:(\:3\:+\:2\:)}}

\displaystyle{\implies\sf\:No.\:of\:cones\:required\:=\:\dfrac{\cancel{6}\:\times\:6\:\times\:15}{\cancel{3}\:\times\:3\:\times\:5}}

\displaystyle{\implies\sf\:No.\:of\:cones\:required\:=\:\dfrac{2\:\times\:\cancel{6}\:\times\:15}{\cancel{3}\:\times\:5}}

\displaystyle{\implies\sf\:No.\:of\:cones\:required\:=\:\dfrac{2\:\times\:2\:\times\:\cancel{15}}{\cancel{5}}}

\displaystyle{\implies\sf\:No.\:of\:cones\:required\:=\:2\:\times\:2\:\times\:3}

\displaystyle{\implies\sf\:No.\:of\:cones\:required\:=\:4\:\times\:3}

\displaystyle{\implies\underline{\boxed{\red{\sf\:No.\:of\:cones\:required\:=\:12}}}}

Answered by BengaliBeauty
79

Answer:-

 \small \bf \underline{Given:}

★★ Radius of the Base of the Cylinder = 6cm

Height of the Cylinder = 15cm

Height of the Cone = 9cm

Radius of Base of Cone = 3cm

 \small \bf \underline{To  \: find:}

We need to find the number of cones

 \small \bf \underline{Formula\:used:}

» Volume of cylinder =  \bf = π R² H

» Volume of cone =  \bf =  \frac{1}{3}   π r² h

» Volume of hemisphere =  \bf \frac{2}{3}   π r³

where,

R = Radius of the Base of the Cylinder

H = Height of the Cylinder

r = Radius of Base of Cone

h = Height of the Cone

 \small \bf \underline{Solution:}

Let number of cones be 'n'

» Volume of cylinderical container = n × (Volume of cone + Volume of hemisphere)

 \bf =  >  πR ²H  = n × ( \frac{1}{3}   π r² h +  \frac{2}{3}   π r³)

  \small\bf =  > π R² H = n ×  \frac{1}{3}  ×  π × r² × (h + 2r)

 \bf =  >  3 R² H = n × r² × (h + 2r)

  \small\bf =  > 3 × 6 × 6 × 15 = n × 3 × 3 × (9 + 6)

 \bf=> n = 12

Answer: Number of cones required = 12 cones

@BengaliBeauty

Feel free to ask your doubts anytime

Similar questions