Math, asked by safiyafathima728, 1 month ago

A right circular metalic cone of length 20 CM and base radius is melted and recost in to a sphere. find the radius of sphere​

Answers

Answered by AestheticSky
23

  \bigstar\large \purple{ \underline{ \pmb{ \sf question... }}}

  • A right circular metalic cone of length 20 cm and base radius 5 cm is melted and recost in to a sphere. find the radius of sphere

  \bigstar\large \purple{ \underline{ \pmb{ \sf concept... }}}

  • in the question we are given that there is a cone of height 20 cm and base radius 5 cm which is melted and casted into a sphere. We are asked to find the radius of the sphere so formed.
  • Here, we need to understand that if cone is melted and sphere is formed then there Volumes will be same.
  • We can equate volumes of both cone and sphere and find the value of radius.

  \bigstar\large \purple{ \underline{ \pmb{ \sf formulas... }}}

\longrightarrow  \underline {\boxed{ \sf volume \: of \: cone =  \frac{1}{3} \pi  r ^{2} h }}

here, r and h represents radius and height respectively.

\longrightarrow  \underline {\boxed {\sf volume \: of \: sphere =  \frac{4}{3} \pi r  ^{3}  }}

  \bigstar\large \purple{ \underline{ \pmb{ \sf solution... }}}

 \red \star \:  \sf \pink{volume \: of \: cone = volume \: of \: sphere} \:  \red \star

 : \implies \sf  \dfrac{1}{3}  \pi r ^{2} h =  \dfrac{4}{3}  \pi r ^{3}

 : \implies \sf  \dfrac{1}{3}  \cancel \pi \times   (5) ^{2} \times  20=  \dfrac{4}{3}   \cancel\pi r ^{3}

  : \implies \sf  \dfrac{1}{ \cancel3}  \times  \dfrac{ \cancel3}{ \cancel4}  \times 25 \times  \cancel{20} ^{5}  =  {r}^{3}

  :\implies \sf r =  \red{5 cm}

So, the required value of radius is 5cm.

ADDITIONAL INFORMATION:-

\boxed{\begin{minipage}{7 cm}More Formulas\\ \\$ \sf CSA \: of \: cone = \pi rl \\ \\TSA \:of\:cone=2\pi r(r+l) \\ \\CSA \:of\:cylinder=2\pi rh\\\\TSA\:of\:cylinder=2\pi r(r+h)\\\\volume\:of\:cyliner=\pi r^{2} h\\\\TSA\:of\:sphere=4\pi r^{3} \\\\TSA\:of\:hemisphere=3\pi r^{3} \\\\CSA\:of\:hemisphere=2\pi r^{3}  $\end{minipage}}

Similar questions