Math, asked by namanshab1435, 1 year ago

A right triangle abc with sides 5cm 12cm and 13 cm is revolved about the side 12 cm. find the volume of the solid so obtained

Answers

Answered by ƦαíηвσωStαƦ
40

\huge{\underline{\overline{\mid{\mathfrak{\purple{\:\: SOLUTION\:\:} \mid}}}}}

\pink{\bf{Given}\begin{cases}\sf{ \red{Radius\:of\: the\: triangle = }5\:cm }\\\sf{ \green{Height \:of\: the\: triangle = 12\:cm}\: }\\ </p><p>\sf{ \red{Slant\:height \:of\: the\: triangle =  }13\:cm\: }\\</p><p>\sf{ \green{Volume\: of\:the\: solid = \:?} \: }\\</p><p>\end{cases}}\\ \\

\underline{ \mathfrak{ \: \:Formula \: \: used \: \: here:- \: \: }} \\

\: \: \: \: \: \: \: \: \: \: \: \sf{Volume\: of\: solid = \dfrac{1}{3}\pi r^2h} \\ \\

\underline{ \mathfrak{ \: Putting\:\:the\:\:values:- \: }} \\

\sf{ \longrightarrow \: Volume\: of\:the\: solid = \bigg(\dfrac{1}{3} \times \pi \times 5 \times 5 \times 12\bigg)cm^3} \\ \\

\sf{ \longrightarrow \: Volume\: of\:the\: solid = \bigg(1 \times \pi \times 25 \times 4\bigg)cm^3} \\ \\

\sf{ \longrightarrow \: Volume\: of\:the\: solid = \bigg(1 \times \pi \times 100\bigg)cm^3}\\ \\

\sf{ \longrightarrow \: Volume\: of\:the\: solid = 100\: \pi\: cm^3}\\ \\

\underline{ \mathfrak{ \: \: Therefore:- \: \: }}

 \: \: \: \sf{\green{Volume\: of\:the\: solid = \underline{ \: 100 \: \pi \:cm^3 \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\underline{ \mathfrak{ \: \: Required \: \: Diagram:- \: \: }} \\

\setlength{\unitlength}{0.99cm}\begin{picture}(6, 4)\linethickness{0.26mm}\qbezier(5.8,2.0)(5.8,2.3728)(4.9799,2.6364)\qbezier(4.9799,2.6364)(4.1598,2.9)(3.0,2.9)\qbezier(3.0,2.9)(1.8402,2.9)(1.0201,2.6364)\qbezier(1.0201,2.6364)(0.2,2.3728)(0.2,2.0)\qbezier(0.2,2.0)(0.2,1.6272)(1.0201,1.3636)\qbezier(1.0201,1.3636)(1.8402,1.1)(3.0,1.1)\qbezier(3.0,1.1)(4.1598,1.1)(4.9799,1.3636)\qbezier(4.9799,1.3636)(5.8,1.6272)(5.8,2.0)\put(0.2,2){\line(1,0){2.8}}\put(3.05,4){\sf{h = 10cm}}\put(3,2){\line(0,2){4.5}}\put(1.5,1.7){\sf{r = 5cm}}\qbezier(.2,2.05)(.7,3)(3,6.5)\qbezier(5.8,2.05)(5.3,3)(3,6.5)\put(0,4){\sf{l = 13cm}}\put(3,2.02){\circle*{0.15}}\put(2.7,2){\dashbox{0.01}(.3,.3)}\end{picture}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions