A right triangle has one angle that measure 23o. The adjacent leg measures 27.6 cm and the hypotenuse measures 30 cm. What is the approximate area of the triangle? Round to the nearest tenth. Area of a triangle = bh
Answers
Answered by
7
From the statement
sin 23 = opposite (vertical side) / 30
Vertical side = 30 Sin23
= 11.72
area = 1/2 bh
area = 1/2 x 27.6 x 11.72
= 162 sq. units - to the nearest 10th
ALTERNATIVELY
area = 1/2 ab Sin Theta
= 1/2 x 27.6 x 30 sin 23
= 162 sq. units - to the nearest 10th
sin 23 = opposite (vertical side) / 30
Vertical side = 30 Sin23
= 11.72
area = 1/2 bh
area = 1/2 x 27.6 x 11.72
= 162 sq. units - to the nearest 10th
ALTERNATIVELY
area = 1/2 ab Sin Theta
= 1/2 x 27.6 x 30 sin 23
= 162 sq. units - to the nearest 10th
Answered by
0
Answer:
Step-by-step explanation:
From the statement
sin 23 = opposite (vertical side) / 30
Vertical side = 30 Sin23
= 11.72
area = 1/2 bh
area = 1/2 x 27.6 x 11.72
= 162 sq. units - to the nearest 10th
ALTERNATIVELY
area = 1/2 ab Sin Theta
= 1/2 x 27.6 x 30 sin 23
= 162 sq. units - to the nearest 10th
Similar questions