Math, asked by kruthikagenious04, 11 months ago

A right triangle whose sides are 3cm and 4cm (other than hypotenuse) is made to revolve about its hypotenuse. Find the volume and surface area of the double cone so formed.​

Answers

Answered by anjanaparvathy2003
6

Given that in a right angled triangle, whose sides are 3 cm and 4 cm(other than hypotenuse).

The double cone so formed by revolving this right-angled triangle ABC about its hypotenuse .

Hypotenuse AC = Ö( 32 + 42) = 5 cm

Area of ΔABC = (1/2) x AB xAC  

⇒ (1/2) x AC x OB = (1/2)x 4 x3  

⇒ (1/2) x 5 x OB = 6  

⇒ OB = 12 / 5 = 2.4 cm.

Volume of double cone = Volume of cone 1 + Volume of cone 2

= (1/3) πr2h1 + (1/3)πr2h2

= (1/3) πr2(h1 + h2)  

= (1/3) πr2(OA +OC)  

= (1/3) x 3.14x(2.4)2 x(5)

= 30.14 cm3 surface area of double cone

= surface area of cone ABD + surface area of cone BCD

= πrl1 + πrl2  [where l1 and l2 are the slant heights of the cone ABD and BCD respectively]

thus the volume of the double cone is 30.14 cubic cm

and surface area of double cone is 52.8 sq cm

Attachments:
Answered by Anonymous
2

Answer :—

Volume of double Cone =

\huge \: 30.17  \: {cm}^{2}

&

Surface area of double Cone =

\huge \: 52.8 \: cm^{2}

_________________________________

step by step explaination :—

Let, ABC be a right angled triangle, right angled at A and BC is the hypotenuse.{as shown on my attachment}

__________________

Also, let AB = 3cm

Also, let AB = 3cmAlso, let AB = 3cm

and, AC = 4cm

Then,

=  &gt; BC  =  \sqrt{3 {}^{2} +  {4}^{2}  }  \\ </p><p> =  &gt;  \:  \:  \: BC =  \sqrt{9 + 16}  \\ </p><p> =  &gt;  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: BC =  \sqrt{25}  \\ </p><p> =  &gt;  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: BC =  5

here, we get

BC = 5cm

___________________

As, ∆ABC revolves about the hypotenuse BC. It forms two cones ABD and ACD.{as shown in my attachment}

In ∆AEB and ∆CAB,

/_AEB = /_CAB ----{each 90°}

}/_ABE = /_ABC ----{common}

therefore, ∆AEB ~ ∆CAB --[by AA similarity]

therefore -  &gt;  \\ \frac{AE}{CA}  =  \frac{AB}{BC}--- [by, c.p.s.t]

=&gt;  \frac{AE}{4} =  \frac{3}{4} \\  =  &gt; AE =  \frac{3 \times 4}{5} \\  =  &gt;  AE =  \frac{12}{5}     \\ =&gt; AE = 2.4

So, radius of the base of each cone,

AE = 2.4cm

Now,

=  &gt;  \: BE  =  \sqrt{ {AB}^{2} -  {AE}^{2}  }  \\ - by \: \:  pythagoras  \: \: theorem  \\  =  &gt;  \:  \:  \: BE = \sqrt{ {3}^{2} -  {(2.4)}^{2}  }   \\ =  &gt;   \:  \:  \:  \:  \:  \:  \:  \:   \: BE = \sqrt{9 - 5.76}   \\  =  &gt; \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  BE  = \sqrt{3.24}  \\  \\ =  &gt;  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  BE = 1.8

So, height of the cone ABD = BE = 1.8cm

therefore,

height of the cone, ACD = CE = BC — BE

CE = 5 — 1.8 = 3.2cm

Now,

Volume of the cone ABD

=   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{1}{3} \pi {r}^{2}  \\  =  \frac{1}{3}  \times  \frac{22}{7}  \times (2.4)^{2}  \times 1.8 \\  = \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \frac{22}{21}  \times 10.368 \\  \\  = \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  10.86 {cm}^{2}

similarly, volume of the cone ACD

=   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{1}{3} \pi {r}^{2}  \\  =  \frac{1}{3}  \times  \frac{22}{7}  \times (2.4)^{2}  \times 3.2\\  (radius \: will \: be \: same \: as AD  \\ is  \: common) \: \: \\ =  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \frac{405.504}{21}  \\  \\  = \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  19.31{cm}^{2}

therefore,

REQUIRED volume of double cone

= 10.86 + 19.31

= 30.17cm³

___________________

& also

surface area of cone ABD = πrl

=  \frac{22}{7}  \times 2.4 \times 3=  \frac{158.4}{7}  \\  =  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 22.63 {cm}^{2}

similarly,

surface area of cone ACD = πrl

=  \frac{22}{7}  \times 2.4 \times 4=  \frac{211.2}{7}  \\  =  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 30.17 {cm}^{2}

therefore,

required surface area of double cone

= 22.63 + 30.17

= 52.8cm²

______________________________

______________________________

hope it's helpful,,,,

\huge{\textbf{\textsf{{\color{red}{@}}{\red{❣}}{|}}}} \huge{\textbf{\textsf{{\color{navy}{O}}{\purple {P}} {\pink{BO}}{\color{pink}{Y࿐}}}}}

Attachments:
Similar questions