Math, asked by Agashpeter, 1 year ago

A right triangle whose sides are 3cm and 4cm (other than hypotenuse) is made to revolve about its hypotenuse
Find the volume and surface area of a double cone formed.

Answers

Answered by BloomingBud
5

let ABC be a right angle triangle.

  • In triangle ABC, angle A = 90°
  • And BC is the hypotenuse.

[see the attached image]

Now,

AB = 3cm

And AC = 4cm

We can get BC by Pythagoras theorem.

⇒ BC² = AB² + AC²

⇒ BC² = 3² + 4²

⇒ BC² = 9 + 16

⇒ BC² = 25

⇒ BC = √25

⇒BC = 5cm

Now,

According to the question:

The ΔABC revolves around the hypotenuse BC. It forms two cones ABD and ACD.

SO,

By AA(Angel-Angle) similarity criterion,

ΔAEB and ΔCAB are similar.

[∵ ∠AEB = CAB = 90° and ∠ABE = ∠ABC]

\boxed{\frac{AE}{CA}=\frac{AB}{BC}}  

[Corresponding sides are proportional in similar triangles]

\implies \frac{AE}{4}=\frac{3}{5}

\implies AE = \frac{12}{5} = \boxed{2.4cm}

So,

The radius of the base of each cone,

AE = 2.4cm

Now,

In right-angled ΔAEB,

⇒ BE² = AB² - AE²  [Pythagoras Theorem]

⇒ BE² = 3² - (2.4)²

⇒ BE² = 9 - 5.76

⇒ BE² = 3.24

⇒ BE = √3.24

⇒ BE = 1.8 cm

So, the height of the cone ABD = BE = 1.8cm

Also,

∴ Height of the cone ACD = CE = BC - BE

= 5 - 1.8 = 3.2cm

Now,

the volume of the cone ABD,

= \frac{1}{3} \pi rh

= \frac{1}{3} \times \frac{22}{7} \times (2.4)^{2} \times (1.8)

=\frac{22}{21} \times 10.368 = \boxed{\sf 10.86cm^{2}}

And,

The volume of the cone ACD,

= \frac{1}{3} \pi r^{2}h

=\frac{1}{3} \times \frac{22}{7} \times (2.4)^{2} \times 3.2

[ The radius will be the same as AD is common]

= \frac{405.504}{21} = \boxed{\sf 19.31cm^{3}}

So,

\underline{\red{\rm Required\ volume\ of\ double\ cone - }}

= 10.86 + 19.31

= 30.17 cm cube.

Now,

The surface area of the cone ABD

= πrl unit sq.

= \frac{22}{7} \times 2.4 \times 3 =\frac{158.4}{7}= \boxed{22.63cm^{2}}

And the surface area of the cone ACD

= πrl unit sq.

= \frac{22}{7} \times 2.4 \times 4 =\frac{211.2}{7}= \boxed{30.17cm^{2}}

Hence,

The required surface area of the double cone

= 22.63 + 10.17

= 52.8cm sq.

Attachments:
Answered by Anonymous
2

Answer :

Volume of double Cone =

\huge \: 30.17  \: {cm}^{2}

&

Surface area of double Cone =

\huge \: 52.8 \: cm^{2}

_________________________________

step by step explaination :

Let, ABC be a right angled triangle, right angled at A and BC is the hypotenuse.{as shown on my attachment}

__________________

Also, let AB = 3cm

Also, let AB = 3cm

and, AC = 4cm

Then,

=  &gt; BC  =  \sqrt{3 {}^{2} +  {4}^{2}  }  \\ </p><p> =  &gt;  \:  \:  \: BC =  \sqrt{9 + 16}  \\ </p><p> =  &gt;  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: BC =  \sqrt{25}  \\ </p><p> =  &gt;  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: BC =  5

here, we get →

here, we get →BC = 5cm

___________________

As, ∆ABC revolves about the hypotenuse BC. It forms two cones ABD and ACD.{as shown in my attachment}

In ∆AEB and ∆CAB,

/_AEB = /_CAB ----{each 90°}

/_AEB = /_CAB ----{each 90°}/_ABE = /_ABC ----{common}

therefore, ∆AEB ~ ∆CAB --[by AA similarity]

therefore -  &gt;  \\ \\ \frac{AE}{CA}  =  \frac{AB}{BC}--- [by, c.p.s.t]

=&gt;  \frac{AE}{4} =  \frac{3}{4} \\  =  &gt; AE =  \frac{3 \times 4}{5} \\  =  &gt;  AE =  \frac{12}{5}     \\ \\ =&gt; AE = 2.4

So, radius of the base of each cone, AE = 2.4cm

Now,

=  &gt;  \: BE  =  \sqrt{ {AB}^{2} -  {AE}^{2}  }  \\ - by \: \:  pythagoras  \: \: theorem  \\  =  &gt;  \:  \:  \: BE = \sqrt{ {3}^{2} -  {(2.4)}^{2}  }   \\ =  &gt;   \:  \:  \:  \:  \:  \:  \:  \:   \: BE = \sqrt{9 - 5.76}   \\  =  &gt; \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  BE  = \sqrt{3.24}  \\  \\ =  &gt;  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  BE = 1.8

So, height of the cone ABD = BE = 1.8cm

therefore,

height of the cone, ACD = CE = BC — BE

CE = (5 — 1.8)cm = 3.2cm

Now,

Volume of the cone ABD

=   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{1}{3} \pi {r}^{2}  \\  =  \frac{1}{3}  \times  \frac{22}{7}  \times (2.4)^{2}  \times 1.8 \\  = \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \frac{22}{21}  \times 10.368 \\  \\  = \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  10.86 {cm}^{2}

similarly, volume of the cone ACD

=   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{1}{3} \pi {r}^{2}  \\  =  \frac{1}{3}  \times  \frac{22}{7}  \times (2.4)^{2}  \times 3.2\\  (radius \: will \: be \: same \: as AD  \\ is  \: common) \: \: \\ =  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \frac{405.504}{21}  \\  \\  = \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  19.31{cm}^{2}

therefore,

REQUIRED volume of double cone

= 10.86 + 19.31

= 30.17cm³

___________________

& also

surface area of cone ABD = πrl

=  \frac{22}{7}  \times 2.4 \times 3=  \frac{158.4}{7}  \\  =  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 22.63 {cm}^{2}

similarly,

surface area of cone ACD = πrl

=  \frac{22}{7}  \times 2.4 \times 4=  \frac{211.2}{7}  \\  =  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 30.17 {cm}^{2}

therefore,

required surface area of double cone

= 22.63 + 30.17

= 52.8cm²

______________________________

______________________________

hope it's helpful,,,,

\huge{\textbf{\textsf{{\color{red}{@}}{\red{❣}}{|}}}} \huge{\textbf{\textsf{{\color{navy}{O}}{\purple {P}} {\pink{BO}}{\color{pink}{Y࿐}}}}}

Attachments:
Similar questions