A right tringle having sides 15cm and 20cmis made torevolve about its hypotenuse.find the volume and surface area of the double cone so formed (use π=3.14
Answers
Answered by
1
SEE THE ATTACHED IMAGE
BD is perpendicular to AC
BD is the radius of the double cone
Using Pythagoras theorem
AC2 =15² + 20²
AC2 = 225 + 400
AC2 = 625
AC = 25
If AD = x cm
CD = 25 – x
Using Pythagoras theorem in triangle ABD
x² + BD² = 15² ------ (i)
BD² = 20² – (25 – x)² ------- (ii)
Solving (i) and (ii)
x² + 20² – (25 – x)² = 15²
x² + 400 – (625 – 50x + x²) = 15²
x² + 400 – 625 + 50x – x²² = 225
50x = 450
x = 9 cm
BD² = 20² – (25 – x)²
BD² = 20² – (25 – 9)²
BD² = 400 – 256 = 144
BD = 12
Volume of the double cone = upper volume + lower volume
Volume = 1/3 pi (BD)2 x(AD + CD)
Volume = 1/3 x 3.14 x 12 x 12 x 25
= 1200 x 3.14= 3768 cm³
Surface Area
Surface area of double cone = upper S.A. + lower S.A.
S.A. = 3.14 x 12 x 15 + 3.14 x 12 x 20
= 1318.8 cm²
BD is perpendicular to AC
BD is the radius of the double cone
Using Pythagoras theorem
AC2 =15² + 20²
AC2 = 225 + 400
AC2 = 625
AC = 25
If AD = x cm
CD = 25 – x
Using Pythagoras theorem in triangle ABD
x² + BD² = 15² ------ (i)
BD² = 20² – (25 – x)² ------- (ii)
Solving (i) and (ii)
x² + 20² – (25 – x)² = 15²
x² + 400 – (625 – 50x + x²) = 15²
x² + 400 – 625 + 50x – x²² = 225
50x = 450
x = 9 cm
BD² = 20² – (25 – x)²
BD² = 20² – (25 – 9)²
BD² = 400 – 256 = 144
BD = 12
Volume of the double cone = upper volume + lower volume
Volume = 1/3 pi (BD)2 x(AD + CD)
Volume = 1/3 x 3.14 x 12 x 12 x 25
= 1200 x 3.14= 3768 cm³
Surface Area
Surface area of double cone = upper S.A. + lower S.A.
S.A. = 3.14 x 12 x 15 + 3.14 x 12 x 20
= 1318.8 cm²
Attachments:
Similar questions