Math, asked by PruthviNath1077, 8 months ago

A ripe papaya is hanging 5.2mtr above from the garden to a tree. A boy whose height is 1.2 mtr is 4mtr away from the base of the tree. At which angle a stone should be shotted using a slingshot to cut the papaya off the tree ??? PLEASE ANSWER FASTLY, AND MAINLY, PLEASE DONT GIVE ANY BORING ANSWERS !!!!!!

Answers

Answered by pulakmath007
9

\huge\boxed{\underline{\underline{\green{Solution}}}}

FOR FIGURE PLEASE CHECK THE ATTACHMENT

Let AB = Height of the ripe papaya from garden = 5.2 metre

CD = Height of the Boy = 1.2 metre

BC = Distance of the boy from the base of the tree = 4 metre = DE

So AE = 5.2 - 1.2 = 4 Metre

Let  \theta be the angle a stone should be shotted using a slingshot to cut the papaya off the tree

tan \theta \:  =  \frac{AE}{DE}

 \implies \: tan \theta \:  =  \frac{4}{4}

 \implies \: tan \theta \:  = 1

 \therefore \:  \theta \:  =  {45}^{ \circ}

Hence the angle a stone should be shotted using a slingshot to cut the papaya off the tree is  {45}^{ \circ}

\displaystyle\textcolor{red}{Please \:  Mark \:  it  \: Brainliest}

Attachments:
Answered by jiya9614
21

Answer:

FOR FIGURE PLEASE CHECK THEATTACHMENT

Let AB = Height of the ripe papaya fromgarden = 5.2 metre

CD = Height of the Boy = 1.2 metre

BC = Distance of the boy from the base of the tree = 4 metre = DE

So AE = 5.2 - 1.2 = 4 Metre

Let \thetaθ be the angle a stone should be shotted using a slingshot to cut the papaya off the tree

tan \theta \: = \frac{AE}{DE}tanθ=DEAE

\implies \: tan \theta \: = \frac{4}{4}⟹tanθ=44

\implies \: tan \theta \: = 1⟹tanθ=1

\therefore \: \theta \: = {45}^{ \circ}∴θ=45∘

Hence the angle a stone should be shotted using a slingshot to cut the papaya off the tree is {45}^{ \circ}45∘

Similar questions