a) Rita has bought a carpet of size 4 m x 6 1/3 m. But her room size is 3 1/4 m 53/4 m.
4
What fraction of area should be cut off to fit the carpet wall-to-wall (completely) in
4.
the room?
Answers
Answer:
Dimensionsofacarpet
\begin{gathered}Length (L) = 4\:m , \\Breadth (B) = 6\frac{2}{3} \:m \\= \frac{20}{3} \:m\end{gathered}
Length(L)=4m,
Breadth(B)=6
3
2
m
=
3
20
m
\underline { \blue { Dimensions \:of \:a \: Room }}
DimensionsofaRoom
\begin{gathered}Length (l) = 3 \frac{1}{3}\:m\\= \frac{10}{3} \:m , \\Breadth (b) = 5\frac{1}{3} \:m \\= \frac{16}{3} \:m\end{gathered}
Length(l)=3
3
1
m
=
3
10
m,
Breadth(b)=5
3
1
m
=
3
16
m
\begin{gathered}\red{ Fraction \:of \:Area \: should \:be \:cut}\\\red{off \:to \:fit \: wall } \\=Area \:of \:the \: carpet - Area\:of \:the \:room \\= L \times B - l \times b \\= 4 \times \frac{20}{3} \:m - \frac{10}{3} \:m \times \frac{16}{3} \:m \\= \frac{80}{3} \:m^{2} - \frac{160}{9} \:m^{2}\\= \frac{240 - 160}{9} \\= \frac{80}{9}\\=8 \frac{8}{9} \:m^{2}\end{gathered}
FractionofAreashouldbecut
offtofitwall
=Areaofthecarpet−Areaoftheroom
=L×B−l×b
=4×
3
20
m−
3
10
m×
3
16
m
=
3
80
m
2
−
9
160
m
2
=
9
240−160
=
9
80
=8
9
8
m
2
Therefore.,
\red{ Area \: of \: carpet \: cut \:off } \green {=8 \frac{8}{9} \:m^{2}}Areaofcarpetcutoff=8
9
8
m
2
•••♪
Step-by-step explanation:
please make my answer as brainest answer as brainest answer
Answer:
Answer:
Dimensionsofacarpet
\begin{gathered}Length (L) = 4\:m , \\Breadth (B) = 6\frac{2}{3} \:m \\= \frac{20}{3} \:m\end{gathered}
Length(L)=4m,
Breadth(B)=6
3
2
m
=
3
20
m
\underline { \blue { Dimensions \:of \:a \: Room }}
DimensionsofaRoom
\begin{gathered}Length (l) = 3 \frac{1}{3}\:m\\= \frac{10}{3} \:m , \\Breadth (b) = 5\frac{1}{3} \:m \\= \frac{16}{3} \:m\end{gathered}
Length(l)=3
3
1
m
=
3
10
m,
Breadth(b)=5
3
1
m
=
3
16
m
\begin{gathered}\red{ Fraction \:of \:Area \: should \:be \:cut}\\\red{off \:to \:fit \: wall } \\=Area \:of \:the \: carpet - Area\:of \:the \:room \\= L \times B - l \times b \\= 4 \times \frac{20}{3} \:m - \frac{10}{3} \:m \times \frac{16}{3} \:m \\= \frac{80}{3} \:m^{2} - \frac{160}{9} \:m^{2}\\= \frac{240 - 160}{9} \\= \frac{80}{9}\\=8 \frac{8}{9} \:m^{2}\end{gathered}
FractionofAreashouldbecut
offtofitwall
=Areaofthecarpet−Areaoftheroom
=L×B−l×b
=4×
3
20
m−
3
10
m×
3
16
m
=
3
80
m
2
−
9
160
m
2
=
9
240−160
=
9
80
=8
9
8
m
2
Therefore.,
\red{ Area \: of \: carpet \: cut \:off } \green {=8 \frac{8}{9} \:m^{2}}Areaofcarpetcutoff=8
9
8
m
2
•••♪
Step-by-step explanation:
please make my answer as brainest answer as brainest answer