Math, asked by swastiksanehi, 7 months ago

a) Rita has bought a carpet of size 4 m x 6 1/3 m. But her room size is 3 1/4 m 53/4 m.
4
What fraction of area should be cut off to fit the carpet wall-to-wall (completely) in
4.
the room?​

Attachments:

Answers

Answered by VEDESWARITS
0

Answer:

Dimensionsofacarpet

\begin{gathered}Length (L) = 4\:m , \\Breadth (B) = 6\frac{2}{3} \:m \\= \frac{20}{3} \:m\end{gathered}

Length(L)=4m,

Breadth(B)=6

3

2

m

=

3

20

m

\underline { \blue { Dimensions \:of \:a \: Room }}

DimensionsofaRoom

\begin{gathered}Length (l) = 3 \frac{1}{3}\:m\\= \frac{10}{3} \:m , \\Breadth (b) = 5\frac{1}{3} \:m \\= \frac{16}{3} \:m\end{gathered}

Length(l)=3

3

1

m

=

3

10

m,

Breadth(b)=5

3

1

m

=

3

16

m

\begin{gathered}\red{ Fraction \:of \:Area \: should \:be \:cut}\\\red{off \:to \:fit \: wall } \\=Area \:of \:the \: carpet - Area\:of \:the \:room \\= L \times B - l \times b \\= 4 \times \frac{20}{3} \:m - \frac{10}{3} \:m \times \frac{16}{3} \:m \\= \frac{80}{3} \:m^{2} - \frac{160}{9} \:m^{2}\\= \frac{240 - 160}{9} \\= \frac{80}{9}\\=8 \frac{8}{9} \:m^{2}\end{gathered}

FractionofAreashouldbecut

offtofitwall

=Areaofthecarpet−Areaoftheroom

=L×B−l×b

=4×

3

20

m−

3

10

3

16

m

=

3

80

m

2

9

160

m

2

=

9

240−160

=

9

80

=8

9

8

m

2

Therefore.,

\red{ Area \: of \: carpet \: cut \:off } \green {=8 \frac{8}{9} \:m^{2}}Areaofcarpetcutoff=8

9

8

m

2

•••♪

Step-by-step explanation:

please make my answer as brainest answer as brainest answer

Answered by Anonymous
1

Answer:

Answer:

Dimensionsofacarpet

\begin{gathered}Length (L) = 4\:m , \\Breadth (B) = 6\frac{2}{3} \:m \\= \frac{20}{3} \:m\end{gathered}

Length(L)=4m,

Breadth(B)=6

3

2

m

=

3

20

m

\underline { \blue { Dimensions \:of \:a \: Room }}

DimensionsofaRoom

\begin{gathered}Length (l) = 3 \frac{1}{3}\:m\\= \frac{10}{3} \:m , \\Breadth (b) = 5\frac{1}{3} \:m \\= \frac{16}{3} \:m\end{gathered}

Length(l)=3

3

1

m

=

3

10

m,

Breadth(b)=5

3

1

m

=

3

16

m

\begin{gathered}\red{ Fraction \:of \:Area \: should \:be \:cut}\\\red{off \:to \:fit \: wall } \\=Area \:of \:the \: carpet - Area\:of \:the \:room \\= L \times B - l \times b \\= 4 \times \frac{20}{3} \:m - \frac{10}{3} \:m \times \frac{16}{3} \:m \\= \frac{80}{3} \:m^{2} - \frac{160}{9} \:m^{2}\\= \frac{240 - 160}{9} \\= \frac{80}{9}\\=8 \frac{8}{9} \:m^{2}\end{gathered}

FractionofAreashouldbecut

offtofitwall

=Areaofthecarpet−Areaoftheroom

=L×B−l×b

=4×

3

20

m−

3

10

3

16

m

=

3

80

m

2

9

160

m

2

=

9

240−160

=

9

80

=8

9

8

m

2

Therefore.,

\red{ Area \: of \: carpet \: cut \:off } \green {=8 \frac{8}{9} \:m^{2}}Areaofcarpetcutoff=8

9

8

m

2

•••♪

Step-by-step explanation:

please make my answer as brainest answer as brainest answer

Similar questions