Physics, asked by srutideo, 6 months ago

A river flows due east at 6 ms-1. A boat sails with the
velocity of 8 ms-t due south relative to river. A car goes
on the road along the bank due west at 11 ms-1. Velocity
of car relative to the boat will be
21 ms-1
Ja9 ms-
V353 ms1
1221 ms-1​

Answers

Answered by Arceus02
14

For this problem,

Ground is a stationary object.

  • Velocity of Boat with respect to ground = \sf V_{BG}
  • Velocity of River with respect to ground = \sf V_{RG}
  • Velocity of Car with respect to ground = \sf V_{CG}
  • Velocity of Boat with respect to river = \sf V_{BR}
  • Velocity of Car with respect to boat = \sf V_{CB}

\\

\sf \vec{V_{BR}} = \vec{V_{BG}} - \vec{V_{RG}}

\longrightarrow \sf \small |\vec{v_{BR}} |  =  \sqrt{ {|\vec{v_B}|}^{2}  +  { |\vec{v_R}| }^{2}  + 2 |\vec{v_B}|  |\vec{v_R}|  \cos \theta  }

\longrightarrow \sf \small |\vec{v_{BR}} |  =  \sqrt{ {|\vec{v_B}|}^{2}  +  { |\vec{v_R}| }^{2}  + 2 |\vec{v_B}|  |\vec{v_R}|  \cos90  }

\longrightarrow \sf |\vec{v_{BR}} |  =  \sqrt{ {|\vec{v_B}|}^{2}  +  { |\vec{v_R}| }^{2}   }

\longrightarrow \sf  | - 8 |  =  \sqrt{ {|\vec{v_B}|}^{2}  +  { |6| }^{2}   }

\longrightarrow \sf 64 - 36 =  { |\vec{v_B}| }^{2}

\longrightarrow \sf \vec{v_B}  =  -  \sqrt{28} \quad\quad\dots (1)

\\

Now,

\sf \vec{v_{CB}} = \vec{v_C} - \vec{v_B}

 \longrightarrow \sf \small |\vec{v_{CB}} |  =  \sqrt{ {|\vec{v_C}|}^{2}  +  { |\vec{v_B}| }^{2}  + 2 |\vec{v_C}|  |\vec{v_B}|  \cos \theta  }

\longrightarrow \sf \small |\vec{v_{CB}} |  =  \sqrt{ {|\vec{v_C}|}^{2}  +  { |\vec{v_B}| }^{2}  + 2 |\vec{v_C}|  |\vec{v_B}|  \cos 90  }

\longrightarrow \sf |\vec{v_{CB}} |  =  \sqrt{ {|\vec{v_C}|}^{2}  +  { |\vec{v_B}| }^{2}    }

\longrightarrow \sf \small |\vec{v_{CB}} |  =  \sqrt{ {  | - 11|}^{2}  +  { | -  \sqrt{28} | }^{2}    } \quad\quad[From\:(1)]

\longrightarrow \sf |\vec{v_{CB}} |  =  \sqrt{ 121 + 28  }

\longrightarrow \sf  |\vec{v_{CB}} |  =  \sqrt{ 149    }

\longrightarrow \underline{\underline{\sf{\green{ \vec{v_{CB}}    \approx \: 12.21 \:m/s\;in\; south\:-\:west\;direction}}}}

Attachments:
Similar questions