A road takes 750 complete revolutions to move once over to level a road . Find the area of the road if the diameter of a road roller is 84 cm and length is 1 m.
Answers
Answered by
12
In this question, It is given that,
Diameter of Roller = 84 cm
Radius of Roller = 42 cm = 42/100 m
Height = 1 m
![= > \: area \: covered \: = 2 \pi \: r \: h = > \: area \: covered \: = 2 \pi \: r \: h](https://tex.z-dn.net/?f=+%3D++%26gt%3B++%5C%3A+area+%5C%3A+covered+%5C%3A++%3D+2+%5Cpi+%5C%3A+r+%5C%3A+h)
![= > area \: covered \: = \: 2 \times \frac{22}{7} \times \frac{42}{100} \times 1 = > area \: covered \: = \: 2 \times \frac{22}{7} \times \frac{42}{100} \times 1](https://tex.z-dn.net/?f=+%3D++%26gt%3B+area+%5C%3A+covered+%5C%3A++%3D++%5C%3A+2+%5Ctimes++%5Cfrac%7B22%7D%7B7%7D++%5Ctimes++%5Cfrac%7B42%7D%7B100%7D++%5Ctimes+1)
![= > area \: covered \: = \frac{1848}{7 \times 100} = > area \: covered \: = \frac{1848}{7 \times 100}](https://tex.z-dn.net/?f=+%3D++%26gt%3B++area+%5C%3A+covered+%5C%3A++%3D++%5Cfrac%7B1848%7D%7B7+%5Ctimes+100%7D+)
![= > area \: covered \: = \frac{264}{100} = > area \: covered \: = \frac{264}{100}](https://tex.z-dn.net/?f=+%3D++%26gt%3B+area+%5C%3A+covered+%5C%3A+++%3D++%5Cfrac%7B264%7D%7B100%7D+)
Now,
Area covered in 750 Revolution,
![= > area \: = 750 \times \frac{264}{100} \: {m}^{2} = > area \: = 750 \times \frac{264}{100} \: {m}^{2}](https://tex.z-dn.net/?f=+%3D++%26gt%3B+area+%5C%3A++%3D+750+%5Ctimes++%5Cfrac%7B264%7D%7B100%7D++%5C%3A++%7Bm%7D%5E%7B2%7D+)
![= > \: area \: = (75 \times 26.4) \: {m}^{2} = > \: area \: = (75 \times 26.4) \: {m}^{2}](https://tex.z-dn.net/?f=+%3D++%26gt%3B++%5C%3A+area+%5C%3A++%3D+%2875+%5Ctimes+26.4%29+%5C%3A++%7Bm%7D%5E%7B2%7D+)
![= > \: area \: = 1980 \: {m}^{2} = > \: area \: = 1980 \: {m}^{2}](https://tex.z-dn.net/?f=+%3D++%26gt%3B++%5C%3A+area+%5C%3A++%3D+1980+%5C%3A++%7Bm%7D%5E%7B2%7D+)
Be Brainly
Diameter of Roller = 84 cm
Radius of Roller = 42 cm = 42/100 m
Height = 1 m
Now,
Area covered in 750 Revolution,
Be Brainly
Similar questions